Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , A D = a 2 . Hình chiếu của S trên mặt phẳng (ABCD) là trung điểm H của B C , S H = a 2 2 . Tính bán kính mặt cầu ngoại tiếp hình chóp S.BHD.
A. a 2 2
B. a 5 2
C. a 17 4
D. a 11 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
HC là hình chiếu của SC lên mặt phẳng (ABCD).
Góc giữa SC với mặt phẳng (ABCD) là: S C H ^ = 45 °
Kẻ
Kẻ
Ta có:
Tam giác SHC vuông cân tại H vì
Mặt khác: HI = AD = a
Xét tam giác SHI vuông tại H:
Đáp án C
Gọi M là trung điểm của CD. Kẻ HK vuông góc với SM.
Ta có:
Mặt khác ta có HK ⊥ SM
Suy ra HK ⊥ (SCD)
Vậy
Xét tam giác BHC vuông tại B, ta có:
Xét tam giác SHM vuông tại H, ta có:
Đáp án B
Tam giác HCD vuông tại C ⇒ H D = H C 2 + C D 2 = a 6 2
Tam giác BCD vuông tại C ⇒ sin C B D ⏜ = C D B D = 1 3
Suy ra bán kính đường tròn ngoại tiếp Δ H B D là
R Δ H B D = H D 2. sin H B D ⏜ = a 6 2 : 2 3 = 3 a 2 4
Bán kính mặt cầu cần tính là R = R Δ H B D 2 + S H 2 4 = a 5 2