Cho hàm số y = f ( x ) có đạo hàm f ’ ( x ) = x ( x - 1 ) 2 ( x + 1 ) . Hỏi hàm số có bao nhiêu điểm cực trị
A. 1
B. 3
C. 2
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Ta có thể lập bảng xét dấu của f'(x) tuy nhiên thì ta có thể dùng mẹo như sau. Tại x=0; x=-2 thì y' đổi dấu do có mũ la lẻ còn x=1 thì không đổi dấu do mũ là chẵn. Vì vậy ta có thể có 2 cực trị.
Trong đó ta thấy x=1 là nghiệm bội hai của phương trình ⇒ x=1 không là điểm cực trị của hàm số
Vậy hàm số có 2 điểm cực trị.
Chọn B
Đáp án D
Phương pháp:
Xác định số điểm mà tại đó f'(x) đổi dấu
Cách giải:
tại 2 điểm x = 1, x = -1. Do đó, hàm số có 2 điểm cực trị.
Đáp án là C
f ' x = 0 ⇔ x x - 1 2 x + 1 = 0 ⇔ x = 0 x = 1 x = - 1
Nhận thấy x=1 là nghiệm bội chẵn nên f’(x) không đổi dấu qua x=1 do đó x=1 không phải là điểm cực trị của hàm số.
Nhận thấy x=0; x=-1 là các nghiệm bội lẻ nên f’(x) sẽ đổi dấu qua x=0; x=-1.
Vậy hàm số có 2 điểm cực trị