K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0
21 tháng 11 2021

Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)

21 tháng 11 2021

viết code hả bạn??? đọc lòi mắt

17 tháng 3 2022

a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)

\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)

DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.

b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)

c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)

△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)

\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)

a:Gọi O là giao của AC và BD

=>O là trung điểm chung của AC và BD

Xét ΔOEB vuông tạiE và ΔOFD vuông tại F có

OB=OD

góc BOE=góc DOF

=>ΔOEB=ΔOFD

=>BE=DF

mà BE//DF

nên BEDF là hình bình hành

b: Xét ΔCHB vuông tại H và ΔCKD vuông tại K có

góc CBH=góc CDK

=>ΔCHB đồng dạng với ΔCKD

=>CH/CK=CB/CD

=>CH*CD=CK*CB

 

25 tháng 12 2021

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

25 tháng 12 2021

hình đâu

 

1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn

25 tháng 9 2018

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th