K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Chọn B

14 tháng 7 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2022

Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.
 

DD
24 tháng 5 2022

Tọa độ điểm \(G\) là \(G\left(\dfrac{6+0+0}{3},\dfrac{0+4+0}{3},\dfrac{0+0+3}{3}\right)\) suy ra \(G\left(2,\dfrac{4}{3},1\right)\)

\(\overrightarrow{AB}=\left(-2,3,0\right),\overrightarrow{BC}=\left(0,-3,4\right),\overrightarrow{CA}=\left(2,0,-4\right)\)

Đặt \(H\left(a,b,c\right)\).

Vì \(H\) là trực tâm tam giác \(ABC\) nên 

\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{CA}=0\\\left[\overrightarrow{AB},\overrightarrow{AC}\right].\overrightarrow{AH}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3b+4c=0\\2a-4c=0\\12\left(a-2\right)+8b+6c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{72}{61}\\b=\dfrac{48}{61}\\c=\dfrac{36}{61}\end{matrix}\right.\) suy ra \(H\left(\dfrac{72}{61},\dfrac{48}{61},\dfrac{36}{61}\right)\).

\(\overrightarrow{OG}=\left(2,\dfrac{4}{3},1\right)\)

Đường thẳng qua OG: \(\left\{{}\begin{matrix}x=2t\\y=\dfrac{4}{3}t\\z=t\end{matrix}\right.\)

Bằng cách thử trực tiếp, ta thấy H nằm trên đường thẳng OG. 

 

20 tháng 11 2018

Chọn đáp án B

20 tháng 6 2019

5 tháng 7 2019

SB →  = (1; 2; -2). Phương trình (P): x + 2y - 2z = 0.

6 tháng 7 2019

Đường thẳng qua B và vuông góc với (P) có phương trình:

x = 1 + t; y = 2 + 2t; z = -2t.

Để tìm giao điểm B 0  của đường thẳng này với (P) ta giả hệ

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra điểm đối xứng với B qua (P) là Giải sách bài tập Toán 12 | Giải sbt Toán 12

2 tháng 7 2019

Giải bài 6 trang 100 sgk Hình học 12 | Để học tốt Toán 12

7 tháng 11 2017

4 tháng 10 2019

8 tháng 3 2019

A B C : x a + y b + z c = 1

Đáp án B