K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

 Đáp án A

P = log a b c + log b a c + 4 log c a b = log a b + log a c + log b a + 4 log b c + 4 log c b  

Ta có: log a b + log b a ≥ 2 ; log a c + 4 log c a ≥ 4 ; log b c + 4 log c b ≥ 4  

Khi đó P ≥ 10 = m   

Dấu bằng xảy ra ⇔ a = b log a c = 4 log c a ⇔ a = b log a c = 2 ⇔ a = b log b c = 2  

Vậy m + n = 12.  

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Đặt \(\left\{\begin{matrix} \log_ab=x\\ \log_bc=y\\ \log_ca=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \log_ba=\frac{1}{x}\\ \log_cb=\frac{1}{y}\\ \log_ac=\frac{1}{z}\end{matrix}\right. \). và \(xyz=1\)

Do \(a,b,c>1\Rightarrow x,y,z>0\)

Ta có:

\(P=\log_a(bc)+\log_b(ac)+4\log_c(ab)\)

\(=\log_ab+\log_ac+\log_ba+\log_bc+4\log_ca+4\log_cb\)

\(=x+\frac{1}{z}+\frac{1}{x}+y+4z+\frac{4}{y}\)

Áp dụng BĐT Cô-si cho các số dương:

\(\left\{\begin{matrix} x+\frac{1}{x}\geq 2\sqrt{1}=2\\ y+\frac{4}{y}\geq 2\sqrt{4}=4\\ \frac{1}{z}+4z\geq 2\sqrt{4}=4\end{matrix}\right.\) \(\Rightarrow P\geq 2+4+4=10\)

\(\Rightarrow m=10\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\rightarrow x=1\\ y=\frac{4}{y}\rightarrow y=2\\ \frac{1}{z}=4z\rightarrow z=\frac{1}{2}\end{matrix}\right.\) (thỏa mãn)

Suy ra \(n=\log_bc=y=2\)

\(\Rightarrow m+n=12\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)