tìm a,b,c biết a/x+2/^2 +b/x+3/^2 = cx+5
với mọi x nguyên
p/s chế nào giải đc phục!~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) ab - ac + ab = a . (b - c + d)
b) ac + ad - bc - bd = a . (c + d) - (bc + bd)
= a . (c + d) - b . (c + d)
= (c . d) . (a - b)
Bài 3 : Biến đổi tổng thành tích
a) ab - ac + ad = a ( b - c + d )
b) ac + ad - bc - bd
= ac + ad + ( - bc ) + ( - bd )
= a ( c + d ) + ( - b ) . ( c + d )
= ( c + d ) . [ a + ( - b ) ]
1/
d/ \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
<=> \(24x^2+7x-6-\left(4x^2+23x+28\right)-\left(10x^2+3x-1\right)=-33\)
<=> \(24x^2+7x-6-4x^2-23x-28-10x^2-3x+1=-33\)
<=> \(10x^2-19x-33=-33\)
<=> \(10x^2-19x=0\)
<=> \(x\left(10x-19\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\10x-19=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{10}\end{cases}}\)
Ta có:
\(x^4+x^3-x^2+ax+b=\left(x^2+x-2\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+x^3+cx^2+dx-2x^2-2cx-2d\)
\(=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
\(\Rightarrow\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a\end{cases}}\)và \(-2d=b\)
\(\Rightarrow\hept{\begin{cases}c=0\\d=1\\a=1\end{cases}}\)và \(b=-2\)
Vậy \(a=1\); \(b=-2\); \(c=0\); \(d=1\)
Bài làm:
Ta có: \(x^4+x^3-x^2+ax+b=\left(x^2+x-2\right)\left(x^2+cx+d\right)\)
\(\Leftrightarrow x^4+x^3-x^2+ax+b=x^4+cx^3+dx^2+x^3+cx^2+dx-2x^2-2cx-2d\)
\(\Leftrightarrow x^4+x^3-x^2+ax+b=x^4+\left(c+1\right)x^3+\left(c+d-2\right)x^2+\left(d-2c\right)x-2d\)
Áp dụng phương pháp đồng nhất hệ số ta được:
c + 1 = 1 và c + d - 2 = -1 và d - 2c = a và -2d = b (Do viết PT bị lỗi nên mk viết kiểu này nhé)
=> c = 0 và d = 1 và a = 1 và b = -2
Vậy ta tìm được bộ số (a;b;c;d) thỏa mãn: (1;-2;0;1)
Nếu nhầm lẫn chỗ nào thì thông cảm cho mk nha
Viết đề kiểu thế thánh hiểu được à