Cho a,b,c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng:\(\dfrac{a+b}{\sqrt{a}+\sqrt{b}}+\dfrac{b+c}{\sqrt{b}+\sqrt{c}}+\dfrac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\dfrac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\dfrac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành
Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
CMR: $xyz=1$
-----------------------------
Có:
$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$
\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)
\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)
Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$
$\Rightarrow 1=\frac{1}{x^2y^2z^2}$
$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)
Ta có đpcm.
Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\)
\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)
\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)
\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)
\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)
\(=\dfrac{2a+b+c}{\sqrt{2}}\).
Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)
\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)
ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.
TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24
a.
\(\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự:
\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng vế:
\(VT\le\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
b.
\(VP=\dfrac{4\left(a+b+c\right)}{2\sqrt{4a\left(a+3b\right)}+2\sqrt{4b\left(b+3c\right)}+2\sqrt{4c\left(c+3a\right)}}\)
\(VP\ge\dfrac{4\left(a+b+c\right)}{4a+a+3b+4b+b+3c+4c+c+3a}\)
\(VP\ge\dfrac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)