Gọi d là đường thẳng giao tuyến của hai mặt phẳng (P): x+2y-5z+1=0 và (Q): 2x-y+3z-1=0. Tính véc tơ chỉ phương u → của d
A. u → = ( 1 ; - 13 ; - 5 )
B. u → = ( 1 ; 13 ; - 5 )
C. u → = ( 1 ; - 13 ; 5 )
D. u → = ( 1 ; 13 ; 5 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Mặt phẳng (P) có một véc-tơ pháp tuyến là
Do nên véc-tơ cũng là một véc-tơ chỉ phương của d.
Đáp án D
Ta có d đi qua N(2;5;2) chỉ phương u d → = ( 1 ; 2 ; 1 ) đi qua N'(2;1;2) chỉ phương u d ' → = ( 1 ; - 2 ; 1 )
Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢
Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).
Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(R) đi qua A(a;0;0) => a=2
Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )
(Q) đi qua B(0;0;b) => b=4
Vậy T = a+b=6
Đáp án A
Mặt phẳng α : 2x-y+3z-1=0 có một vectơ pháp tuyến là n → 1 =(2;1;3)
Vậy vectơ n → =(-4;2;-6) cùng phương với vectơ n → 1 cũng là một vectơ pháp tuyến của α