Cho đường thằng (d): y=(m^2 + 2m - 1)x + 3m + 1
(d1): y= -x-1
Tìm m để đường thẳng (d) và (d1) cắt nhau tại 1 điểm bên trái trục tung.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao của d và d1 là điểm có hoành độ thỏa mãn :
2x + 3 = ( m + 1) x + 5
2x - ( m + 1) x = 5 - 3
x ( 2 - m - 1) = 2
( 1-m) x = 2
x = 2 : ( 1-m) đk m # 1
Để d và d1 cắt nhau về bên trái trục tung thì \(\dfrac{2}{1-m}\) < 0
1- m < 0 => m > 1
a: Thay x=0 và y=3 vào (d1), ta đc:
2m+1=3
=>2m=2
=>m=1
(d1): y=3
=>giao của (d1) với (d) nằm trên trục hoành
b: \(h\left(O;d1\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{\left|2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}\)
Để h lớn nhất thì m=1
Cái này là toán lp 9 mà :D
a/ Để...\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne1\\2m+1=1\end{matrix}\right.\Leftrightarrow m=0\)
b/ Vì (d1) cắt...
Ta có PTHĐGĐ:
(m-3)x+2m+1=3x-2
Thay x= 2 vào có:
(m-3).2+2m+1= 3.2-2
\(\Leftrightarrow2m-6+2m+1=4\)
\(\Leftrightarrow m=\frac{9}{4}\) (tm)
c/ Vì...
Thay y= -3 vào y= x-5
\(\Rightarrow x=2\)
Thay x= 2; y= -3 vào (d1)
(m-3).2+2m+1= -3
\(\Leftrightarrow2m-6+2m+1=-3\)
\(\Leftrightarrow m=\frac{1}{2}\)
Để hàm số y=(m-1)x+4 là hàm số bậc nhất thì \(m-1\ne0\)
hay \(m\ne1\)
a) Để (d1) và (d2) song song với nhau thì \(\left\{{}\begin{matrix}m-1=2m+3\\3m-1\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2m=3+1\\3m\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-m=4\\3m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\m\ne\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=-4\)
Kết hợp ĐKXĐ, ta được: m=-4
Vậy: Để (d1) và (d2) song song với nhau thì m=-4