Cho số phức z thỏa mãn: z + 2 + i = 4 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z − 1 − 2 i . Tính S = M + m.
A. 6 2
B. 4 2
C. 2 2
D. 8 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có:
Suy ra:
Xét điểm A(-2; 1) và B(4; 7) , phương trình đường thẳng AB: x - y + 3 = 0.
Gọi M(x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Khi đó ta có và ta thấy , suy ra quỹ tích M thuộc đoạn thẳng AB.
Xét điểm C( 1; -1); ta có , hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Do đó
Vậy
Đáp án C
Đặt Số phức z được biểu diễn bởi điểm N(x;y)
Số phức được biểu diễn bởi điểm A(-2;1)
Số phức được biểu diễn bởi điểm B(5;-6)
được biểu diễn bởi điểm
Ta có: |z + 2 - i| + |z - 5 + 6i| = 7 2 Mà AB = 7 2 nên N thuộc đoạn thẳng AB.
Đường thẳng AB:
=> phương trình đường thẳng AB là: x + y + 1 = 0
Vì N(x;y) thuộc đoạn thẳng AB nên x + y +1 = 0, x ∈ [-2;5]
Ta có:
Xét trên [-2;5] ta có: f'(x) = 4(x-1)
Ta có:
Vậy M + m = 4 2
Chọn C.
Ta có |z – 1 – 2i| = 4. Hay |z – (1 + 2i)| = 4.
Đặt w = z + 2 + i
Gọi M( x; y) là điểm biểu diễn của số phức w trên mặt phẳng Oxy.
Khi đó, tập hợp điểm biểu diễn của số phức w là đường tròn tâm I, với I là điểm biểu diễn của số phức 1 + 2i + 2i + 2 + i = 3 + 3i.
Tức là tâm I(3; 3) , bán kính r = 4.
Do đó:
Vậy S = m2 + M2 = 68.
Đáp án C
Đặt z = x + yi , ( x ; y ∈ ℝ ) . Số phức z được biểu diễn bởi điểm N(x;y)
Số phức z 1 = − 2 + i được biểu diễn bởi điểm A(-2;1)
Số phức z 2 = 5 − 6 i được biểu diễn bởi điểm B(5;-6)
Ta có: z + 2 − i + z − 5 + 6 i = 7 2 ⇔ NA + NB = 7 2 . Mà AB = 7 2 nên N thuộc đoạn thẳng AB.
Đường thẳng AB : qua A − 2 ; 1 qua B 5 ; − 6 => phương trình đường thẳng AB là: x + y +1 = 0.
Vì N(x;y) thuộc đoạn thẳng AB nên x + y +1 = 0, x∈ − 2 ; 5 .
Ta có:
Đáp án A
Em có:
4 = z + 2 + i = z − 1 − 2 i + 3 + 3 i ≥ z − 1 − 2 i − 3 + 3 i