K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Đáp án C

Gọi số có 4 chữ số có dạng  abcd ¯  (a, b, c, d là các chữ số,  a ≠ 0 ).

Số phần tử của không gian mẫu n(S) = 9.9.8.7 = 4536

Gọi A là biến cố “Chọn được số lớn hơn 2500”.

  • Trường hợp 1: a > 2

Chọn a: từ 3, 4,…, 9 → có 7 cách chọn.

Chọn b: khác a → có 9 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có 7.9.8.7 = 3528 số.

  • Trường hợp 2: a = 2, b > 5

Chọn a: a = 2 → có 1 cách chọn.

Chọn b: từ 6, 7, 8, 9 → có 4 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có 1.4.8.7 = 224 số.

  • Trường hợp 3: a = 2, b = 5, c > 0

Chọn a: a = 2 → có 1 cách chọn.

Chọn b: b = 5 → có 1 cách chọn.

Chọn c: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có 1.1.7.7 = 49 số.

  • Trường hợp 4: a = 2, b = 5, c = 0, d > 0

Chọn a: a = 2 → có 1 cách chọn.

Chọn b: b = 5 → có 1 cách chọn.

Chọn c: c = 0 → có 1 cách chọn.

Chọn d: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Vậy trường hợp này có 1.1.1.7 = 7 số.

Như vậy  n A = 3528 + 224 + 49 + 7 = 3808 ⇒ P A = 3808 4536 = 68 81 .

24 tháng 3 2017

Đáp án C

Gọi số có 4 chữ số có dạng (a, b, c, d là các chữ số, ).

Số phần tử của không gian mẫu

Gọi A là biến cố “Chọn được số lớn hơn 2500”.

  • Trường hợp 1:

Chọn a: từ 3, 4,…, 9 → có 7 cách chọn.

Chọn b: khác a → có 9 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 2:

Chọn a: → có 1 cách chọn.

Chọn b: từ 6, 7, 8, 9 → có 4 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 3:

Chọn a: → có 1 cách chọn.

Chọn b: → có 1 cách chọn.

Chọn c: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 4:

Chọn a: → có 1 cách chọn.

Chọn b: → có 1 cách chọn.

Chọn c: → có 1 cách chọn.

Chọn d: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Vậy trường hợp này có số.

Như vậy 

n(S)=6!

Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12

=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)

=>Có 3*3!*3!

=>P=3/20

NV
24 tháng 12 2022

Gọi chữ số cuối là x thì tổng 4 chữ số đầu là \(x+2\)

\(\Rightarrow\) Tổng 5 chữ số là: \(2x+2\)

Mặt khác tổng 5 chữ số nhỏ nhất từ tập đã cho là \(1+2+3+4+5=15\)

\(\Rightarrow2x+2\ge15\Rightarrow2x\ge13\)

\(\Rightarrow x=\left\{7;8;9\right\}\)

TH1: \(x=7\Rightarrow\) tổng 4 chữ số đầu là 9 mà \(1+2+3+4>9\Rightarrow\) không tồn tại 4 chữ số thỏa mãn

TH2: \(x=8\Rightarrow\) tổng 4 chữ số đầu bằng 10

Trong 9 chữ số, chỉ có duy nhất bộ \(\left\{1;2;3;4\right\}\) có tổng bằng 10

Do đó số số trong trường hợp này là: \(4!\) số

TH3: \(x=9\Rightarrow\) tổng 4 chữ số đầu bằng \(11\Rightarrow\) có 1 bộ 4 chữ số thỏa mãn là \(\left\{1;2;3;5\right\}\)

Trường hợp này cũng có \(4!\)  số

Xác suất: \(P=\dfrac{4!+4!}{A_9^5}=...\)

22 tháng 7 2017

Chọn A

Gọi số tự nhiên có bốn chữ số thỏa mãn yêu cầu bài toán là 

Số phần tử của không gian mẫu là 

Gọi biến cố A ‘‘Số được chọn lớn hơn số 6700’’.

Ta các TH sau:

TH1:  có 1 cách chọn.

có 3 cách chọn.

+ Các chữ số c,d được chọn từ 8 chữ số còn lại có sắp thứ tự và số cách chọn là  A 8 2

Số cách để chọn ở trường hợp 1 là: 3. A 8 2

TH2 : có 3 cách chọn. Khi đó: b,c,d có A 9 3  cách chọn.

Số cách để chọn ở trường hợp 1 là: 3. A 9 3

Như vậy, ta được n(A) = 3. A 8 2  + 3. A 9 3 = 1680

Suy ra 

20 tháng 10 2018

Đáp án D

NV
8 tháng 12 2021

Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)

Mặt khác \(a+b+c=d+e+f-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)

\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)

Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)

Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)

NV
20 tháng 12 2022

Số phần tử của S là: \(8!\)

Gọi tổng 4 chữ số sau là S \(\Rightarrow\) tổng 4 chữ số đầu là \(S+2\)

Ta có: \(S+S+2=1+3+4+5+6+7+8+9\)

\(\Rightarrow2S=41\Rightarrow S=\dfrac{41}{2}\) (vô lý do các chữ số đều nguyên)

Vậy đề bài sai

29 tháng 9 2018