Hàm số f ( x ) có đạo hàm f ' ( x ) = ( x 2 - 2 x - 3 ) 3 , x ∈ R . Hàm số đã cho đồng biến trên khoảng nào dưới đây
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị
Đáp án C
f ' x > 0 ⇔ 1 < x < 2 ⇒ hàm số đồng biến trên khoảng (1;2)
Đáp án D
Từ bảng biến thiên ta thấy hàm số y=f(x) đồng biến trên các khoảng ( - ∞ ; 0 ) và ( 1 ; + ∞ )
Ta có - 3 ; - 2 ⊂ ( - ∞ ; 0 ) nên hàm số đồng biến trên khoảng (-3;-2)
Đáp án A
Ta có
.
Bảng xét dấu:
Suy ra hàm số có một điểm cực trị.
Lời giải:
$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.
BBT:
Từ BBT suy ra điểm cực tiêu là $x=0$
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x