Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y = x - 1 x 2 + m x + 4 có hai đường tiệm cận
A. 1
B. 0
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có:
nên đồ thị hàm số luôn có 1 TCN là y = 0
Đồ thị hàm số có 2 đường tiệm cận thì nó chỉ có duy nhất 1 đường tiệm cận đứng
⇔ phương trình x 2 + m x + 4 = 0 có nghiệm x = 1
hoặc phương trình x 2 + m x + 4 = 0 có nghiệm kép (có thể bằng 1)
Vậy có 3 giá trị của m thỏa mãn bài toán
Suy ra đồ thị hàm số có 1 đường TCN y = 0.
Do đó đồ thị hàm số có đúng 2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2 - 2 x + 4 = 0 có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn A
Đáp án B(Cm) có hai đường tiệm cận đứng có hai nghiệm phân biệt khác 1
Chọn D.
nên đồ thị hàm số luôn có 1 tiệm cận ngang.
Do đó đồ thị hàm số cần có đúng 1 tiệm cận đứng.
+ m = 0, đồ thị hàm số có 1 tiệm cận đứng là đường thẳng x = 3 2 => m = 0 thỏa mãn bài toán.
+ m ≠ 0 , đồ thị hàm số có đúng 1 tiệm cận đứng khi và chỉ khi phương trình có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có nghiệm x = 1.