tìm x biết \(\sqrt{2x}=5\) khi đó
kết quả của \(\sqrt{\dfrac{0,25}{9}}\) bằng
kết quả của \(\sqrt{5a}.\sqrt{45a}\) a lớn hơn hoặc bằng 0
kết quả của\(2y^2\) \(\sqrt{\dfrac{x^4}{4y^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)
\(=4\sqrt{5a}\)
b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)
\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)
\(=-4a\sqrt{10}\)
c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)
\(=\left|x-1\right|-\left|x-2\right|\)
\(M=\dfrac{3}{2}\cdot4\sqrt{2x}-\dfrac{1}{3}\cdot3\sqrt{2x}+\dfrac{2}{5}\cdot5\sqrt{2x}-4\sqrt{2x}=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :
DƯƠNG PHAN KHÁNH DƯƠNG
Có :
\(x=\dfrac{1}{\sqrt{5}-2}\Rightarrow x^2=\dfrac{1}{\left(\sqrt{5}-2\right)^2}=\dfrac{1}{5-4\sqrt{5}+4}\\ =\dfrac{1}{9-4\sqrt{5}}\\ y=\dfrac{1}{5+4\sqrt{5}}=\dfrac{1}{5+4\sqrt{5}+2}=\dfrac{1}{\left(\sqrt{5}+2\right)^2}\\ \Rightarrow\sqrt{y}=\sqrt{\dfrac{1}{\left(\sqrt{5}+2\right)^2}}=\dfrac{1}{\sqrt{5}+2}\)
\(\Rightarrow A=\dfrac{1}{9-4\sqrt{5}}-3.\dfrac{1}{\sqrt{5}-2}.\dfrac{1}{\sqrt{5}+2}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{1}{9-4\sqrt{5}}-\dfrac{3}{5-4}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{9+\sqrt{5}+2\left(9-4\sqrt{5}\right)}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-3=\dfrac{27-4\sqrt{5}}{81-80-3}\\ =27-4\sqrt{5}-3=24-4\sqrt{5}\)
2.
\(\frac{1}{G}=\frac{2x-5\sqrt{x}+18}{\sqrt{x}}=2\sqrt{x}-5+\frac{18}{\sqrt{x}}\)
\(=2\sqrt{x}+\frac{18}{\sqrt{x}}-5\geq 2\sqrt{2.18}-5=7\) theo BĐT AM-GM
\(\Rightarrow G\leq \frac{1}{7}\)
Vậy \(G_{\max}=\frac{1}{7}\Leftrightarrow x=9\)
1.
\(\frac{1}{K}=\frac{x-2\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}-2+\frac{4}{\sqrt{x}}\)
\(=\frac{4\sqrt{x}}{9}+\frac{4}{\sqrt{x}}+\frac{5\sqrt{x}}{9}-2\)
\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{9}}{9}-2=\frac{7}{3}\) (theo BĐT AM-GM)
\(\Rightarrow K\leq \frac{3}{7}\)
Vậy \(K_{\max}=\frac{3}{7}\Leftrightarrow x=9\)
a: \(=\dfrac{x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{-5\sqrt{x}-5+x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-3\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
b: khi x=6-2căn 5 thì \(P=\dfrac{6-2\sqrt{5}-3\sqrt{5}+3-5}{\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)\cdot\sqrt{5}}\)
\(=\dfrac{-5\sqrt{5}+4}{\sqrt{5}\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)}\)
1) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x=25\Leftrightarrow x=\dfrac{25}{2}\left(tm\right)\)
2) \(=\sqrt{\dfrac{\dfrac{1}{4}}{9}}=\dfrac{\dfrac{1}{2}}{3}=\dfrac{1}{6}\)
3) \(=\sqrt{225a^2}=15a\left(do.a\ge0\right)\)
4) \(=2y^2.\dfrac{x^2}{2\left|y\right|}=\left[{}\begin{matrix}x^2y\left(y>0\right)\\-x^2y\left(y< 0\right)\end{matrix}\right.\)
cho mình hỏi câu 4 có công thức nào ko chỉ mình với