Cho hình lăng trụ đứng ABC.A'B'C' có AA' = 2a, tam giác ABC vuông tại B, có AB = a, BC = 2a. Thể tích khối lăng trụ là ABC.A'B'C'
A. 2 a 3
B. 2 a 3 3
C. 4 a 3 3
D. 4 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
V A B C . A ' B ' C ' = A A ' . S A B C = 1 2 A A ' . A B . B C = 4 a 3 3 2 = 2 a 3 3
a) Với hình lăng trụ đứng ABC.ABC, diện tích tứ giác ABBA bằng 2a^2 và đáy ABC là tam giác vuông cân tại A, ABa. Thể tích khối lăng trụ ABC.ABC có thể tính bằng công thức: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Vì đáy ABC là tam giác vuông cân nên diện tích đáy là \(\frac{1}{2} \times a \times a = \frac{1}{2}a^2\). Chiều cao của lăng trụ chính là cạnh AB, vì tam giác ABa là tam giác vuông cân nên \(AB = \sqrt{2}a\). Do đó, thể tích khối lăng trụ ABC.ABC là: \(V = \frac{1}{3} \times \frac{1}{2}a^2 \times \sqrt{2}a = \frac{\sqrt{2}}{6}a^3\). b) Với hình lăng trụ đứng ABC.ABC, góc giữa (ABC) và (ABC) bằng 60°, ta cũng áp dụng công thức tính thể tích khối lăng trụ: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Diện tích đáy và chiều cao đã được tính tương tự như phần a), ta có thể tính được thể tích khối lăng trụ ABC.ABC.
Đáp án C
Thể tích khối lăng trụ là: V = A A ' . S A B C = a . 1 2 a .2 a = a 3
Đáp án A
Gọi H là trung điểm của BC.
Ta có: B C = A B 2 + A C 2 = 2 a , A H = B C 2 = a
tam giác AA'H có A ' H = A A ' 2 - A H 2 = a 3
Vậy thể tích lăng trụ là V = A ' H . S A B C = a 3 . 1 2 . a 2 3 = 3 a 3 2
Chọn A.