ngày THI ĐẤU OLM tối nay, ngày 28/04/2023 để so tài với học sinh toàn quốc!!!
Ôn tập kiểm tra học kì 2 hiệu quả, đạt thành tích cao!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y = f'(x) như hình bên. Hàm số y= f (3-x) đồng biến trên khoảng nào dưới đây?
A.
B.
C.
D.
=> hàm số y=g(x) nghịch biến trên (-2; -1)
=>hàm số y=g(x) đồng biến trên (-1;2)
Chọn B
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y=f'(x) như hình bên. Hàm số y=f(3-x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm trên R và đồ thị hàm số y=f'(x) như hình vẽ bên. Hàm số g ( x ) = 2 f ( 1 - x ) + 1 3 x 3 - 4 x - 1 đồng biến trên khoảng nào dưới đây
Cho hàm số y= f( x) có đạo hàm liên tục trên R. Đồ thị hàm số y= f’(x) như hình bên dưới
Hàm số g(x) = 2 . f(x) – x2 đồng biến trên khoảng nào trong các khoảng sau đây?
A. ( - ∞ ; - 2 )
B. (-2; 2)
C. (2; 4)
D. ( 2 ; + ∞ )
Cho hàm số y=f(x) liên tục và có đạo hàm trên R đồ thị hàm số y=f'(x) như hình vẽ bên dưới. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm trên và đồ thị hàm số y=f’(x) như hình vẽ bên. Hàm số g(x) = 2 f 1 - x + 1 3 x 3 - 4 x - 1 đồng biến trên khoảng nào dưới đây?
A. - ∞ ; - 2
B. (1;2)
C. 3 ; + ∞
D. (2;3)
Cho hàm số f(x) có đạo hàm f'(x) xác định, liên tục trên ℝ và có đồ thị f'(x) như hình vẽ bên. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y = f(x) có đạo hàm liên tục trên i. Đồ thị hàm số y = f’(x) như hình bên dưới
Hàm số g(x) = 2 f(x) - x 2 đồng biến trên khoảng nào trong các khoảng sau đây?
Cho hàm số y= f( x) có đạo hàm là hàm số f’(x) trên R. Biết rằng hàm số có đồ thị như hình vẽ bên dưới. Hàm số y= f(x) nghịch biến trên khoảng nào?
A. (-3; -1) và (1; 3).
B. (-1; 1) và (3; 5).
C. .
D. (- 5; -3) và (-1; 1).
Cho hàm số y= f( x) có đạo hàm là hàm số y= f’(x) trên R. Biết rằng hàm số y= f’ ( x-2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y= f( x) nghịch biến trên khoảng nào?
A. .
B. (- 1; 1)
D. .
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
=> hàm số y=g(x) nghịch biến trên (-2; -1)
=>hàm số y=g(x) đồng biến trên (-1;2)
Chọn B