Cho hình thoi ABCD biết độ dài hai đường chéo lần lượt là 6 cm và 8 cm giao điểm của hai đường chéo là H. a Tính độ dài đoạn AB. b. Tính khoảng cách từ điểm H đến AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình thoi nên \(AB=BC=CD=DA=20\left(cm\right)\)
Và AC cắt BD tại O nên O là trung điểm AC,BD
\(\Rightarrow AC=2AO=32\left(cm\right);BD=2OB=24\left(cm\right)\)
OB = 12 cm => BD = 2.12 = 24 cm
OA = 16 cm => AC = 2.16 = 32 cm
AB = BC = CD = AD = 20 cm (hình thoi có 4 cạnh bằng nhau)
1/ S hình thoi :
18 x 33 : 2 = 297 ( dm2 )
ĐS : 297 dm2
2/ Độ dài đường chéo còn lại : 4/3 : 8/5 x 2 = 5/3 ( cm2 )
ĐS : 5/3 cm2
3/ Độ dài đường chéo thứ 2 : 42 x 2/3 = 28 ( cm )
S : 42 x 28 : 2 = 588 ( cm2 )
ĐS : 28 cm2
4/ Tổng độ dài 2 đường chéo : 41 x 2 = 82 ( cm )
Độ dài đường chéo lớn : ( 82 + 28 ) : 2 = 55 ( cm )
Độ dài đường chéo bé : 55 - 28 = 27 ( cm )
S : 55 x 27 : 2 = 742, 5 ( cm2 )
ĐS : 742,5 cm2
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Giả sử hình thoi ABCD, đường chéo AC vuông góc với BD tại O, AC = 8 cm; BD = 6 cm.
Gọi BH là đường cao hình thoi kẻ từ đỉnh B.
Ta có: DO = 1 2 BD = 1 2 .6 = 3 (cm);
AO = 1 2 AC = 1 2 .8 = 4 (cm)
Áp dụng định lý Py-ta-go trong tam giác vuông AOD vuông tại O ta có:
AD = A O 2 + O D 2 = 4 2 + 3 2 = 5 (cm)
SABCD = 1 2 BD. AC = 1 2 6.8 = 24 (cm2)
SABCD = BH. AD => BH = S A B C D A D = 24 5 = 4, 8 (cm)
Đáp án cần chọn là: B
Giúp với