K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

TXĐ: .

Ta có:

Gọi 

Ta có phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ là:

Để (vô nghiệm)

Không có điểm M nào thỏa mãn yêu cầu bài toán.

Chọn A.

Chú ý: Phải đưa phương trình đường thẳng (d) về dạng và xác định hệ số góc của đường thẳng d cho chính xác, tránh sai lầm khi cho hệ số góc của đường thẳng d trong bài toán này bằng 1

15 tháng 4 2018

21 tháng 1 2018

Đáp án B

NV
23 tháng 4 2022

\(\left(m^2-3m-5\right)x-y-2m+19=0\)

\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)

Ta có: 

\(f'\left(x\right)=-3x^2+4x-1\)

\(f'\left(2\right)=-5\)

Phương trình tiếp tuyến tại A:

\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)

Để hai đường thẳng song song: 

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)

\(\Leftrightarrow m=0\)

8 tháng 5 2017

Đáp án là D

1 tháng 12 2019

a. Đồ thì hàm số song song với y=3x là y=3x + b

Cho x = 0 thì y = b, ta được điểm A(0;b) thuộc trục tung Oy

Cho y = 0 thì x = -\(\frac{\text{b}}{a}\), ta được B(-\(\frac{\text{b}}{a}\);0) thuộc trục hoành Ox

Theo đề bài, ta có đồ thị hàm số căt trục hoành tại điểm có hoành độ bằng -3

Vậy : \(-\frac{b}{a}\) = -3 hay \(-\frac{b}{3}\) = -3 => b = 9

Ta có 2 điểm : A(0;9) thuộc trục tung Oy

B(-3;0) thuộc trục hoành Ox

NV
15 tháng 6 2019

Câu 1:

\(f'\left(1\right)=g'\left(1\right)=k\)

\(h\left(x\right)=\frac{f\left(x\right)+2}{g\left(x\right)+1}\Rightarrow h'\left(x\right)=\frac{f'\left(x\right)\left[g\left(x\right)+1\right]-g'\left(x\right)\left[f\left(x\right)+2\right]}{\left[g\left(x\right)+1\right]^2}\)

\(\Rightarrow h'\left(1\right)=\frac{k\left(b+1\right)-k\left(a+2\right)}{\left(b+1\right)^2}=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\)

\(h'\left(1\right)=k\Rightarrow k=\frac{k\left(b-a-1\right)}{\left(b+1\right)^2}\Rightarrow\frac{b-a-1}{\left(b+1\right)^2}=1\)

\(\Leftrightarrow b-a-1=\left(b+1\right)^2\Rightarrow a=b-1-\left(b+1\right)^2\)

\(\Rightarrow a=-b^2-b-2\)

NV
15 tháng 6 2019

Câu 2:

\(y=f\left(x\right)=\frac{x+1}{x-2}\Rightarrow f'\left(x\right)=\frac{-3}{\left(x-2\right)^2}\)

Phương trình hoành độ giao điểm:

\(\frac{x+1}{x-2}=x+m\Leftrightarrow x+1=\left(x+m\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+\left(m-3\right)x-2m-1=0\)

\(\Delta=\left(m-3\right)^2+4\left(2m+1\right)=\left(m+1\right)^2+12>0\)

\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt A và B có hoành độ giả sử là a và b

Theo Viet: \(\left\{{}\begin{matrix}a+b=3-m\\ab=-3m-1\end{matrix}\right.\) \(\Rightarrow3a+3b-ab=10\) (1)

Mặt khác do tiếp tuyến tại A và B song song

\(\Leftrightarrow\frac{-3}{\left(a-2\right)^2}=\frac{-3}{\left(b-2\right)^2}\Leftrightarrow\left[{}\begin{matrix}a-2=b-2\\a-2=2-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4-b\end{matrix}\right.\)

TH1: \(a=b\) thay vào (1):

\(\Rightarrow-a^2+6a-10=0\left(vn\right)\)

TH2: \(a=4-b\)

\(\Rightarrow a+b=4\Rightarrow3-m=4\Rightarrow m=-1\)

12 tháng 4 2021

Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:

\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)

Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)

Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //

\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)

Theo định lí Viet ta có: 

\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)