Với n lẻ; số dư của \(n^2\)+ 4*n khi chia cho 8 là....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ
Nếu lẻ thì có dạng với .
Do đó .
Suy ra lẻ.
Vậy với mọi số tự nhiên , nếu lẻ thì lẻ.
\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)
b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
TH1: Nếu n lẻ
=> n2 lẻ
=> n2 + n = Chẵn
mà 2015 lẻ
=> n2 + n + 2015 lẻ
TH2: Nếu n chẵn
=> n2 chẵn
=> n2 + n = Chẵn
mà 2015 lẻ
=> n2 + n + 2015 lẻ
=> n2 + n + 2015 lẻ với mọi n (Đpcm)
(+) n là số lẻ (1)
=> n^2 là số lẻ (2)
Từ (1) và (2)=> n^2 + n là số chẵn
=> n^2 + n + 2015 tận cùng là số lẻ
(+) n là số chẵn
=> n^2 cũng là số chẵn
=> n^2 + n là số chẵn => n^2 + n + 2015 là số lẻ ( chẵn + lẻ = lẻ ; 2015 là số lẻ)
ĐÚng cho mình nha
Số dư là 5. Chắc chắn vậy!