Tìm x biết 1+1/3+1/6+1/10+...+2/x(x+1)=2014/2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{4030}\)
=>x+1=4030
=>x=4029
vậy x=4029
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
\(\frac{3+5+7+...+2015}{2+4+6+...+2014}+x=1\)
\(\frac{\left(3+2015\right).\left[\left(2015-3\right):2+1\right]:2}{\left(2+2014\right).\left[\left(2014-2\right):2+1\right]:2}+x=1\)
\(\frac{1016063}{1015056}+x=1\)
\(x=1-\frac{1016063}{1015056}\)
\(x=-\frac{1}{1008}\)
1/3 = 2/6 = 2/(2x3) = 2/2 - 2/3
1/6 = 2/12 = 2/(3x4) = 2/3 - 2/4
...
2/x(x + 1) = 2/x - 2/(x +1)
Do đó:
1/3 + 1/6 + ... + 2/x(x+1) = 2/2 - 2/3 + 2/3 - 2/4 + ... +2/x - 2/(x + 1) = 2/2 - 2/(x+1)
suy ra 1 - 2/(x + 1) = 2013/2014
x= 4027
1/3 = 2/6 = 2/(2x3) = 2/2 - 2/3 1/6 = 2/12 = 2/(3x4) = 2/3 - 2/4 ... 2/x(x + 1) = 2/x - 2/(x +1) Do đó: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2 - 2/3 + 2/3 - 2/4 + ... +2/x - 2/(x + 1) = 2/2 - 2/(x+1) suy ra 1 - 2/(x + 1) = 2013/2014 x= 4027