Tính thể tích V của khối lập phương ABCD.A'B'C'D' biết đường chéo AC'=a 3 .
A. a 3 3
B. 3 3 a 3
C. 3 6 a 3 4
D. a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Giả sử cạnh của hình lập phương là a. Khi đó AB' = x 2 . Xét tam giác vuông AB’C’ vuông tại B’ ta có .
Do đó
Đáp án A
Ta có: hình lập phương ABCD.A'B'C'D' có đường chéo bằng a 3
Suy ra cạnh của hình lập phương bằng a.
Vậy V A ' . A B C D = 1 3 h B = 1 3 a . a 2 = a 3 3
\(AC=AB\sqrt{2}=4a\)
Áp dụng định lý Pitago:
\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)
\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)
Chọn D.
Gọi cạnh hình lập phương là x. Ta có