tìm số có 4 chữ số khác nhau biết rằng nếu viết thêm một chữ số 0 vào giữa hàng nghìn và hàng trăm thì được số mới gấp 9 lần số phải tìm????????????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Gọi số cần phải tìm là abcd
Ta có : abcd x 9 = a0bcd
=> ( a x 1000 + b x 100 + c x 10 + d ) x 9 = a x 10000 + b x 100 + c x 10 + d
=> a x 9000 + b x 900 + c x 90 + d x 9 = a x 10000 + b x 100 + c x 10 + d
=> a x 1000 = b x 800 + c x 80 + d x 8
#) Rùi chứ bn, tự tìm hiểu thêm nhé :D
#~Will~be~Pens~#
Gọi số cần tìm : abcd thêm 0 vào giữa số hàng nghìn và hàng trăm ta được : a0bcd, theo đề bài ta có :
a0bcd = abcd . 9 \(\rightarrow\)a0bcd = abcd ( 10 - 1 ) \(\rightarrow\)a0bcd = abcd . 10 - abcd \(\rightarrow\)a0bcd + abcd = abcd0
Vì b + d có tận cùng bằng 0 \(\rightarrow\)d = 0 hoặc d = 5.
* Nếu d = 0 \(\rightarrow\)c\(\ne\)0 mà c + c có tận cùng bằng 0 nên c = 5.
Khi đó : b + b + 1 có tận cùng bằng 5 nên b = 2 hoặc b = 7.
Nếu b = 2 thì 0 + a có tận cùng bằng 2 thì a = 2 : loại vì a\(\ne\)b.
Nếu b = 7 thì 0 + a + 1 có tận cùng bằng 7 nên a = 6 thì 6750 x 9 = 60 750 đúng với đề bài.
* d = 5
Ta có : c + c + 1 = 0 có tận cùng là 5 nên c = 2 hoặc 7.
Nếu c = 2 thì b + b = 2 nên b = 1, do đó 0 + a có tận cùng bằng 1 nên a = 1 : loại vì a\(\ne\)b.
Nếu c = 7 thì b + b + 1 có tận cùng là 7 nên b = 3 hoặc 8. Với b = 3 thì 0 + a = 3 nên a = 3 : loại vì a\(\ne\)c.
Vậy số cần tìm là 6750.
#ĐinhBa
a0bcd = 9abcd
10 000a + 100b + 10c + d = 9000a + 900b + 90c + 9d
1000a = 800b + 80c + 8d
1000a = 8[100b + 10c + d]
1000a = 8 x bcd
1000 = 8 x a x bcd
125 = a x bcd
Vì a là chữ số hàng nghìn nên a khác 0
* nếu a = 1 => bcd = 125 => abcd = 1125 [loại, vì cs hàng nghìn giống cs hàng trăm]
* nếu a = 2 [loại, vì 125 không chia hết cho 2]
* nếu a = 3 [loại, vì 125 không chia hết cho 3]
..................................................................
* nếu a = 9 [loại, vì 125 không chia hết cho 9]
Vậy: k có số thỏa mãn
Gọi số cần tìm là abcd.
Theo đề bài ta có: \(\overline{a0bcd}=9\overline{abcd}\Leftrightarrow10.000a+\overline{bcd}=9\cdot\left(1000a+\overline{bcd}\right)\)
\(\Leftrightarrow1000a=8\cdot\overline{bcd}\Leftrightarrow125\cdot a=\overline{bcd}\)
- a = 1 => bcd = 125 => abcd = 1125
- a = 2 => bcd = 250 => abcd = 2250
- a = 3 => bcd = 375 => abcd = 3375
- a = 4 => bcd = 500 => abcd = 4500
- a = 5 => bcd = 625 => abcd = 5625
- a = 6 => bcd = 750 => abcd = 6750
- a = 7 => bcd = 875 => abcd = 7875
- a>=8 => bcd >=1000 loại.
gọi số phải tìm là abcd.( a > 0 ; a ; b ; c ; d < 100) thì số mới là a0bcd
Theo bài ra ta có :
abcd x 9 = a0bcd
( a x 1000 + bcd ) x 9 = a x 10000 + bcd
a x 9000 + bcd x 9 = a x 10000 + bcd
bcd x 9 - bcd = a x 10000 - a x 9000
bcd x 8 = a x 1000
-> a = 8 ; bcd = 1000
-> số cần tìm là 81000
gọi số có 3 chữ số khác nhau là abcd ( a khác 0 ; a,b,c,d là chữ số )
theo đề bài ta có :
a0bcd = abcd x 9
a x 10000 + bcd = 9 x ( a x 1000 + bcd )
a x 10000 + bcd = a x 9000 + 9 x bcd
a x 1000 = 8 x bcd
a x 125 = bcd
do a là chữ số , bcd là số có 3 chữ số nên a có thể bằng 1,2,3 ( a không thể bằng 4 vì nếu a bằng thì bcd bằng 125 x 4 =1000 , loại vì bcd là số có 3 chữ số ) => a = 1,2,3
ta có các trường hợp sau :
a = 1 => bcd = 1 x 125 = 125 => abcd = 1125
a = 2 => bcd = 2 x 125 = 250 => abcd = 2250
a = 3 => bcd = 3 x 125 = 375 => abcd = 3375
vậy số có 4 chữ số cần tìm là : 1125 ; 2250 ; 3375
Gọi số cần tìm là abcd
Theo bài ra có a0bcd = 9.abcd => 10000.a + bcd = 9000.a + 9.bcd => 1000.a = 8.bcd => 125.a = bcd
Ta thấy 125.a chia hết cho 25 => cd = 25 hoặc cd = 50 hoặc cd = 75
+ Với cd = 25 ta có 125.a = 100.b + 25 => 5.a = 4.b + 1 (1)
Ta thấy 5.a chia hết cho 5 => 4.b + 1 cũng phải chia hết cho 5 => 4.b + 1 phải có tận cùng là 0 hoặc 5 => 4.b phải có tận cùng là 4 (4.b chẵn) => b = {1; 6}. Thay b = {1; 6} vào (1) => a = {1; 5} => loại vì 4 chữ số a; b; c; d có chữ số trùng nhau.
+ Với cd = 50 ta có 125.a = 100.b + 50 => 5.a = 4.b + 2 (2)
Ta thấy 5.a chia hết cho 5 => 4.b + 2 cũng phải chia hết cho 5 => 4.b + 2 phải có tận cùng là 0 hoặc 5 => 4.b phải có tận cùng là 8
=> b = {2; 7} thay b = {2; 7} vào 2 => a = {2; 6}; a=2 loại vì trùng với b=2. với a = 6 ta có số cần tìm là 6750
Thử lại 60750 : 6750 = 9
+ Với cd = 75 ta có 125.a = 100.b + 75 => 5.a = 4.b + 5 (3)
Ta tháy 5.a chia hết cho 5 => 4.b + 5 cũng phải chia hết cho 5 => 4.b + 5 phải có tận cùng là 0 hoặc 5 => 4.b phải có tận cùng là 0
=> b = {0; 5}; Trường hợp b = 5 loại vì b trùng d. Thay b = 0 vào (3) => a = 1 ta có số cần tìm là 1075
Thử lại 10075 : 1075 không chia hết => loại
Vậy số cần tìm là 6750
*Ta có:
9xabcd=a0bcd
10000a+bcd=9x(1000a+bcd)
10000a+bcd=9000a+9xbcd
1000a=8xbcd
*Nếu a=1 thì 1000=8xbcd
bcd=1000:8
bcd=125
.......
*Nếu a=8 thì bcd không thỏa mãn
Vậy abcd=1125,2250,3375,....,875