Cho hình chóp S.ABCD đáy ABCD là hình chữ nhật cạnh AB = 2a,AD = a , ∆ S A D đều và nằm trong mặt phẳng vuông góc với đáy. Diện tích xung quanh của mặt cầu ngoại tiếp hình chóp S.ABCD là:
A. 16 π 3 a 2
B. 57 π 18 a 2
C. 48 π 9 a 2
D. 24 π 9 a 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Trong mặt phẳng (ABCD) gọi: H là trung điểm AD.
Gọi I,J lần lượt là trung điểm của BC và G là trọng tâm ∆ SAD
Đường thẳng d qua O và vuông góc với (ABCD) gọi là trục của đường tròn ngoại tiếp đáy (ABCd).
∆ qua G và vuông góc với (SAD) là trục của đường tròn ngoại tiếp (SAD).
Trong mặt phẳng (SHI), gọi I = ∆ ∩ d
=> J cách đều các đỉnh của hình chóp
=> J là tâm mặt cầu ngoại tiếp S.ABCD có bán kính
R = JD =
Có
Gọi E là trung điểm của AD ta chỉ ra mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình
chóp S.EABC .
Từ đó ta đưa về bài toán tìm bán kính của mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy.
Sử dụng công thức tính nhanh
với R là bán kính mặt cầu ngoại tiếp hình chóp, r là bán kính
đường tròn ngoại tiếp đáy hình chóp, h là chiều cao hình chóp
Sử dụng công thức tính diện tích mặt cầu
Mà SE vuông góc với AD (do tam giác SAD đều có SE là trung tuyến)
Suy ra SE vuông góc với ( ABCD)=>SE vuông góc với (EABC)
Nhận thấy EABC là hình vuông nên đường tròn ngoại tiếp EABC cũng
là đường tròn ngoại tiếp tam giác ABC
Hay mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình chóp S.EABC.
Mà hình chóp S.EABC có cạnh bên SE vuông góc với (EABC) và đáy EABC là hình vuông cạnh a. Gọi I là tâm hình vuông EABC
Suy ra bán kính mặt cầu ngoại tiếp chóp S.EABC là
Chọn đáp án C
Ta có mặt cầu ngoại tiếp hình chóp S.ABCD chính là mặt cầu ngoại tiếp hình chóp S.ABC.
Đáp án A.
Trong mặt phẳng (ABCD), gọi O = A C ∩ B D , H là trung điểm AD.
Gọi I,J lần lượt là trung điểm của BC và G là trọng tâm Δ S A D .
Đường thẳng d qua O và vuông góc với (ABCD) gọi là trục của đường tròn ngoại tiếp đáy (ABCD).
∆ qua G và vuông góc với (SAD) là trục của đường tròn ngoại tiếp (SAD).
Trong mặt phẳng (SHI), gọi I = ∆ ∩ d
⇒ J cách đều các đỉnh của hình chóp
⇒ J là tâm mặt cầu ngoại tiếp S.ABCD có bán kính
R = J D = O J 2 + O D 2 = G H 2 + O D 2
Có G H = 1 3 S H = 1 3 . a . 3 2 = a 3 6 ;
O D = 1 2 D B = a 5 2 ⇒ R = 3 a 2 56 + 5 a 2 4 = 4 3 a ⇒ S m c = 4 πR 2 = 16 3 a 2