Cho hai biểu thức B = 1 2 ! + 2 3 ! + 3 4 ! + ... + 99 100 ! .
So sánh B với 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(A=-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{99^2}-\frac{1}{100^2}\)
\(=-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
........
\(\frac{1}{99^2}< \frac{1}{98.99}\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\right)>-1\)
Vậy A > - 1
\(A=-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
=> A > -1
mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho
ta có
\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)
Vậy A=B
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{18}{19}.\frac{19}{20}\)
\(A=\frac{1}{20}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(\Leftrightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{18}{19}.\frac{19}{20}\)
\(\Leftrightarrow A=\frac{1}{20}>\frac{1}{21}\)
\(\Leftrightarrow A>\frac{1}{21}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)................\left(1-\frac{1}{100}\right)\)
\(\Leftrightarrow B=\frac{3}{4}.\frac{8}{9}..................\frac{99}{100}\)
\(B=\frac{1.3}{2^2}.\frac{2.4}{3^2}................\frac{9.11}{50^2}\)
\(B=\frac{11}{50}< \frac{11}{21}\)
B = 1 2 ! + 2 3 ! + 3 4 ! + ... + 99 100 ! B = 2 − 1 2 ! + 3 − 1 3 ! + 4 − 1 4 ! + ... + 100 − 1 100 ! B = 2 2 ! − 1 2 ! + 3 3 ! − 1 3 ! + 4 4 ! − 1 4 ! + ... + 100 100 ! − 1 100 ! B = 1 1 ! − 1 2 ! + 1 2 ! − 1 3 ! + 1 3 ! − 1 4 ! + ... + 1 99 ! − 1 100 ! B = 1 − 1 100 ! < 1
Vậy B<1