Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (ABCD) và S A = α 6 . Tính góc φ giữa đường thẳng SB với mặt phẳng (SAC).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi I là giao điểm của AC và BD.
Ta có S A ⊥ A B C D ⇒ S A ⊥ B D . Lại có A C ⊥ B D (tính chất hình vuông).
Suy ra B D ⊥ S A C . Do đó hình chiếu của SB trên (SAC) là SI. Suy ra góc giữa đường thẳng SB và mặt phẳng (SAC) là góc giữa SB và SI, tức là góc ISB (do tam giác ISB vuông tại I nên I S B ^ là góc nhọn). Ta có:
S B = S A 2 + A B 2 = a 2 + a 2 = a 2 , I B = B D 2 = A 2 2
D o đ ó sin I S B = I B S B = 1 2 ⇒ I S B = 30 °
Đáp án A.
Cách 1: Gọi I là giao điểm của AC và BD.
Ta có S A ⊥ A B C D ⇒ S A ⊥ B D . Lại có A C ⊥ B D (tính chất hình vuông).
Suy ra B D ⊥ S A C . Do đó hình chiếu của SB trên S A C là SI. Suy ra góc giữa đường thẳng SB và mặt phẳng S A C là góc giữa SB và SI, tức là góc I S B ^ (do tam giác ISB vuông tại I nên I S B ^ là góc nhọn). Ta có:
S B = S A 2 + A B 2 = a 2 + a 2 = a 2 , I B = B D 2 = a 2 2
Do đó
sin I S B ^ = I B S B = 1 2 ⇒ I S B ^ = 30 °
Cách 2: (Phương pháp tọa độ hóa) Không mất tổng quát, gán tọa độ như sau:
A 0 ; 0 ; 0 , B 1 ; 0 ; 0 , D 0 ; 1 ; 0 , S 0 ; 0 ; 1 Khi đó C 1 ; 1 ; 0 .
Ta có S A → = 0 ; 0 ; − 1 , S C → = 1 ; 1 ; − 1 , S B → = 1 ; 0 ; − 1
Đặt n → = S A → , S C → = 1 ; − 1 ; 0 . Khi đó n → là một VTPT của S A C .
Gọi α là góc giữa đường thẳng SB và mặt phẳng S A C , β là góc giữa vecto n → và vecto S B → . Ta có
sin α = cos β = n → . S B → n → . S B → = 1 2 . 2 = 1 2 ⇒ α = 30 °
Đáp án B
Vì ABCD là hình vuông ⇒ A B ⊥ A D 1
Ta có S A B ⊥ A B C D S A C ⊥ A B C D ⇒ S A ⊥ A B C D ⇒ S A ⊥ A B 2
Từ (1), (2) suy ra A B ⊥ S A D ⇒ S B ; S A D ^ = S B ; S A ^ = B S A ^
Tam giác SAB vuông tại A, có cos B S A ^ = S A S B = S A S A 2 + A B 2 = 2 5 5 .
Chọn A