Trong không gian với hệ toạ độ Oxyz, mặt phẳng toạ độ (Ozx) có phương trình là
A. x=0.
B. z=0.
C. x-z=0.
D. y=0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp Án D
Pt đường thẳng d có vecto chỉ phương u ⇀ = n P ⇀ , n Q ⇀ = (1;0;-1)
Dt đi qua A (1;-2;3)
Chọn đáp án D
\(\overrightarrow{AB}=\left(2;-3;-1\right)\) ; \(\overrightarrow{AC}=\left(-2;0;-2\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(6;6;-6\right)=6\left(1;1;-1\right)\)
Mp (ABC) nhận (1;1;-1) là 1 vtpt
Phương trình:
\(1\left(x-0\right)+1\left(y-1\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow x+y-z+1=0\Rightarrow\left\{{}\begin{matrix}a=1\\d=1\end{matrix}\right.\)
Chọn B
Mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 có tâm I (1;2;3), bán kính R=3.
IA = √6 < R nên A nằm trong mặt cầu.
Gọi r là bán kính đường tròn thiết diện, ta có
Trong đó h là khoảng cách từ I đến (P).
Diện tích thiết diện là
Vậy diện tích hình tròn (C) đạt nhỏ nhất khi h = IA. Khi đó là véc tơ pháp tuyến của (P).
Phương trình mặt phẳng (P) là 1 (x-0)+2 (y-0)+ (z-2)=0 ó x + 2y + z – 2 = 0
Chọn A.
+) Trong không gian hệ tọa độ Oxyz, mỗi mặt phẳng (P) có phương trình:
ax + by + c.z + d = 0(a^2 + b^2 + c^2 > 0). Khi đó, một vecto pháp tuyến của mặt phẳng (P) là: n → a , b , c
Các vecto có dạng k . n → k ≠ 0 cũng là vetco pháp tuyến của mặt phẳng.
+) Mặt phẳng (P): -2 x + 2y – z - 3 = 0 có một vecto pháp tuyến là: n → - 2 ; 2 ; 1
Do đó, vecto cũng là 1 vecto pháp tuyến của mặt phẳng (P).
Đáp án D