K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

3 tháng 7 2018

12 tháng 5 2018

a: Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm

MB là tiếp tuyến có B là tiếp điểm

Do đó: MA=MB

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

Suy ra: \(\widehat{MAB}=\widehat{MBA}\)

Xét ΔDAB vuông tại D và ΔEBA vuông tại E có 

BA chung

\(\widehat{DBA}=\widehat{EAB}\)

Do đó: ΔDAB=ΔEBA

Suy ra: \(\widehat{DAB}=\widehat{EBA}\)

hay \(\widehat{HAB}=\widehat{HBA}\)

Xét ΔHBA có \(\widehat{HAB}=\widehat{HBA}\)

nên ΔHBA cân tại H

Suy ra: HA=HB

hay H nằm trên đường trung trực của AB(1)

Ta có:MA=MB

nên M nằm trên đường trung trực của AB(2)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(3)

Từ (1), (2) và (3) suy ra O,H,M thẳng hàng

22 tháng 8 2018

Tính được OM = 4 => M di chuyển trên (O;4cm)

19 tháng 3 2016

chän nthbbrg

25 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi BD, AE là đường cao của ∆ MAB. Ta có ΔMAE =  ∆ MBD (cạnh huyền – góc nhọn) nên ME = MD,  ∆ MHE =  ∆ MHD (cạnh huyền – cạnh góc vuông) nên  ∠ (EMH) = ∠ (DMH). MH và MO đều là tia phân giác của góc AMB nên M, H, O thẳng hàng.