K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Xét  \(A=\frac{10^{2014}+2016}{10^{2015}+2016}\Rightarrow10A=\frac{10^{2015}+20160}{10^{2015}+2016}=\frac{10^{2015}+2016+18144}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\)

Xét \(B=\frac{ 10^{2015}+2016}{10^{2016}+2016}\Rightarrow10B=\frac{10^{2016}+20160}{10^{2016}+2016}=\frac{10^{2016}+2016+18144}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2016}\)

Có \(\frac{18144}{10^{2015}+2016}>\frac{18144}{10^{2016}+2016}\)

\(\Rightarrow10A>10B\Leftrightarrow A>B\)

7 tháng 4 2018

cảm ơn bạn nha

20 tháng 10 2019

A- 1 = \(\frac{10^{2015}-1-\left(10^{2016}-1\right)}{10^{2016}-1}=\frac{-9.10^{2015}}{10^{2016}-1}=\frac{-90.10^{2014}}{10^{2016}-1};\)

B- 1 = \(\frac{10^{2014}+1-\left(10^{2015}+1\right)}{10^{2015}+1}=\frac{-9.10^{2014}}{10^{2015}+1};\)

xét \(\frac{A-1}{B-1}=\frac{-90.10^{2014}}{10^{2016}-1}:\frac{-9.10^{2014}}{10^{2015}+1}=\frac{10\left(10^{2015}+1\right)}{10^{2016}-1}=\frac{10^{2016}+10}{10^{2016}-1}>1\)

=> A-1 > B-1 => A > B

5 tháng 4 2015

Gọi phân số 10^2014+1/10^2015+1 là A

Gọi phân số 10^2015+1/10^2016+1

Xét thấy B = 10^2015+1/10^2016+1 là phân số nhỏ hơn 1

=> theo tính chất : Nếu a/b<1 thì a/b<(a+n)/(b+n) (a,b,n thuộc N ;b;n khác 0)

=> B = (10^2015+1)/(10^2016+1) < (10^2015+1+9)/(10^2016+1+9) = (10^2015+10/10^2016+10)

=> B < 10.(10^2014+1)/10.(10^2015+1)

=> B < 10^2014+1/10^2015+1 = A (cùng bớt 10 ở tử và mẫu)

 Vậy B < A                                   

      

\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)

\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)

mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)

nên A>B

28 tháng 10 2015

là 142015  =10452016

21 tháng 3 2018

cdbvksmtv 8.3 ngay21