K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2016

abcabc = abc.1001

Vì 1001 chia hết cho 7; 11; 13 nên abc.1001 chia hết cho 7; 11; 13 hay abcabcchia hết cho 7; 11; 13

27 tháng 1 2019

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích số.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

a b c a b c ¯ = 1000 a b c ¯ + a b c ¯ = 1001 a b c ¯

1001 ⋮ 7 ⇒ 1001 a b c ¯ ⋮ 7 ⇒ a b c a b c ¯ ⋮ 7

23 tháng 12 2018

phân tích ra rồi cộng lại sẽ đc số chia hết cho 7

28 tháng 3 2018

abcabc = 100000a+10000b+1000c+100a+10b+c

ababab= 100000a+10000b+1000a+100b+10a+b

=>  (abcabc+ababab) =  100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b

                                =  201110a+22111b+1001c

                                = 91.(2210a+221b+11c)

                                = 7.13.(2210a+221b+11c)

=>  (abcabc+ababab) \(⋮\)7

14 tháng 7 2018

7)a) abcabc : abc = 1001 
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên  abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
 

5 tháng 11 2018

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

18 tháng 10 2015

a)

abcabc=abc.1001

Mà 1001 chia hết cho cả 7 ;11và 13

=>abc.1001 chia hết cho 7;11;13

Hay abcabc chia hết cho 7;11;13

Vậy............................

b)

abcdeg=abc.1000+deg                                                                                     (1)

Thay abc=2.deg vào (1) ta có  :

deg.2.1000+deg

=deg.2001

Mà 2001 cùng chia hết ch0 23 và 29

=>deg.2001 chia hết cho cả 23 và 29

Hay abcdeg chia hết cho 23 và 29

Vậy ......................................

12 tháng 4 2016

Giải:

Ta có: abcabc = abc000  + abc 

                      = abc x 1000 + abc 

                      = abc . (1000 + 1)

                      = abc . 1001

                      = abc . 7 . 11 . 13

Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13

22 tháng 4 2016

1/ Từ ab+2cd => abcd = 100ab + cd = 200cd +cd

hay abcd = 201cd mà 201 chia hết cho 67

Vậy abcd chia hết cho 67 (đpcm)

22 tháng 4 2016

2/

a) Ta có: abcabc = abc000 + abc

                         = abc x 1000 + abc 

                         = abc x (1000 + 1)

                         = abc x 1001

                         = abc . 7 . 3 . 11

Vậy abcabc là tích của abc với 7 ;3;11 =>  abcabc chia hết cho 7, 11 và 13

2 tháng 7 2019

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

2 tháng 7 2019

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt

\(\overline{abcabc}=\overline{abc}\times1001⋮13\)