Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC = b, AB = c, . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Dễ thấy Δ A B C là tam giác vuông cân tại B, do đó O A = O B = O C (với O là trung điểm của AC)
Ta có B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ A B 1 , lại do A B 1 ⊥ S B ⇒ A B 1 ⊥ B 1 C
Do đó Δ A B 1 C vuông tại O nên O A = O C = O B 1
Vậy O là tâm mặt cầu ngoại tiếp hình chóp A B C C 1 B 1
Do đó R = A C 2 = a 2 2 ⇒ V = 4 3 π R 3 = π a 3 2 3
Đáp án A
Công thức
R = B C 2 sin B A C ⏜ = a 2 + 2 a 2 − 2 a . a 2 cos 45 ° 2 sin 45 ° = a 2 ⇒ V = 4 3 π R 3 = π a 3 2 3
Đáp án B.
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC ⇒ I A = I B = I C (1).
Ta có ∆ S A C = ∆ S A B ⇒ A B 1 = A C 1 . Từ đây ta chứng minh được B 1 C 1 / / B C .
Gọi M là trung điểm của B C ⇒ B C ⊥ S A M ⇒ B 1 C 1 ⊥ S A M .
Gọi H = S M ∩ B 1 C 1 ⇒ H B 1 M B = H C 1 M C , do M B = M C nên H B 1 = H C 1
Mặt phẳng (SAM) đi qua trung điểm H của B 1 C 1 nên B 1 C 1 ⊥ S A M nên (SAM) là mặt phẳng trung trực của B 1 C 1 . Do I ∈ A M ⊂ S A M nên I B 1 = I C 1 (2).
Gọi N là trung điểm của AB, suy ra A B ⊥ I N S A ⊥ I N ⇒ I N ⊥ S A B .
Tam giác A B B 1 vuông tại B 1 có N là trung điểm của AB nên N A = N B 1 = 1 2 A B .
Như vậy ta có các tam giác vuông sau bằng nhau
∆ I N A = ∆ I N B = ∆ I N B 1 ⇒ I A = I B = I B 1 (3).
Từ (1), (2) và (3) suy ra 5 điểm A,B,C, B 1 , C 1 cùng nằm trên mặt cầu tâm I, bán kính R = I A = 2 3 . a 3 2 = a 3 3 (do ABC là tam giác đều và I là tâm đường tròn ngoại tiếp ⇒ I cũng là trọng tâm tam giác ABC).
Đáp án đúng : A