Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2 sin x + c os 2 x trên đoạn 0 ; π . Khi đó 2 M + m bằng
A. 4
B. 5 2
C. 7 2
D. 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp
Sử dụng tập giá trị của hàm y = sin x : 1 ≤ sin x ≤ 1 để đánh giá hàm số bài cho
Cách giải
Ta có:
− 1 ≤ s i n x ≤ 1 ⇒ − 1 ≤ − s i n x ≤ 1
2 − 1 ≤ 2 − s i n x ≤ 2 + 1 ⇔ 1 ≤ 2 − s i n x ≤ 3 ⇒ M = 3 ; m = 1
Đáp án D
Ta có liên tục trên đoạn .
Ta có
.
.
Vậy m=2 và M = 11, do đó .
Chọn B
Hàm số xác định và liên tục trên đoạn [1;4]. Đặt y = f(x)
Ta có:
Có
Vậy m + M = 16.
Đáp án A
Ta có: y = 2 s i nx+cos 2 x
= 2 sin x + 1 − 2 sin 2 x → t → s inx y = f x = − 2 t 2 + 2 t + 1.
Với x ∈ 0 ; π ⇒ t ∈ 0 ; 1 .
Xét hàm số f t = − 2 t 2 + 2 t + 1 trên 0 ; 1 có f ' t = − 4 t + 2.
Ta có: f ' t = 0 ⇔ t = 1 2 .
Tính f 0 = 1 ; f 1 2 = 3 2 ; f 1 = 1.
Vậy M = 3 2 m = 1 ⇒ 2 M + m = 4.