Cho hàm số f x = 2 mx + lnx . Tìm giá trị thực của tham số m để nguyên hàm F x của f x thỏa mãn F 1 = 0 và F 2 = 2 + 2 ln 2
A. m = 2
B. m = 1
C. m = 0
D. m = 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức f ' x f x = 2 - 2 x *
Lấy nguyên hàm 2 vế (*), ta được ∫ d f x f x = ∫ 2 - 2 x d x
⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C
Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó f x = e - x 2 + 2 x
Xét hàm số f x = e - x 2 + 2 x trên - ∞ ; + ∞ , có f ' x = - 2 x + 2 = 0 ⇔ x = 1
Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0
Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt ⇔ 0 < m < e .
Chọn A.
Đặt u = ln x + x 2 + 1 , d v = d x ta được
F(x)=x ln x + x 2 + 1 - x 2 + 1 + C
Vì F(0) = 1 nên C = 2
Vậy
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Đặt t = 2 x ( t > 0 ) phương trình trở thành:
Xét hàm số trên khoảng 0 ; + ∞ có
Bảng biến thiên:
Với mỗi t > 0 cho một nghiệm duy nhất x = log 2 t Vậy phương trình có hai nghiệm thực phân biệt khi và chỉ khi (∗) có hai nghiệm phân biệt t > 0. Quan sát bảng biến thiên suy ra
Ta đi rút gọn Sm: Có
Do đó Vì vậy
Vậy điều kiện là
Có tất cả 27 số nguyên dương thoả mãn.
Chọn đáp án A.