Tìm x ∈ ℤ ,biết:
a ) 5 2 + − 11 2 < x < 8 3 + 5 6 ; b ) 1 5 + 2 35 < x 35 < − 3 7 + 4 5 ;
c ) 1 2 + − 3 5 + 1 10 ≤ x ≤ 8 3 + 14 6 ; d ) 1 4 + 5 12 + − 5 3 ≤ x ≤ 11 5 + − 5 10 + 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: x+y=5
nên x=5-y
Ta có: xy=6
=>y(5-y)=6
=>y2-5y+6=0
=>(y-2)(y-3)=0
=>y=2 hoặc y=3
=>x=3 hoặc x=2
a: \(\Leftrightarrow\left(x-3;y+4\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-11\right);\left(2;3\right);\left(-4;-3\right);\left(10;-5\right)\right\}\)
Bài 1:
a: \(x=\dfrac{2}{3}:\dfrac{3}{5}=\dfrac{2}{3}\cdot\dfrac{5}{3}=\dfrac{10}{9}\)
b: \(x=\dfrac{17}{8}:\dfrac{7}{17}=\dfrac{17}{8}\cdot\dfrac{17}{7}=\dfrac{289}{56}\)
c: \(x=-\dfrac{3}{4}:\dfrac{7}{12}=\dfrac{-3}{4}\cdot\dfrac{12}{7}=\dfrac{-63}{28}=-\dfrac{9}{4}\)
d: \(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{1}{4}\)
hay \(x=\dfrac{1}{4}:\dfrac{1}{6}=\dfrac{3}{2}\)
e: \(\Leftrightarrow\dfrac{1}{2}:x=-4-\dfrac{1}{3}=-\dfrac{17}{3}\)
hay \(x=-\dfrac{1}{2}:\dfrac{17}{3}=\dfrac{-3}{34}\)
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
a) \(\left(2x+3\right)^3=\left(2x+3\right)^8\)
TH1 \(2x+3=1\)
\(2x=1-3=-2\)
\(x=-1\)
TH2 \(2x+3=0\)
\(2x=-3\Rightarrow x=-\frac{3}{2}\)
b) ? sai đề
c) \(\left|5-3\right|=\left|11+2x\right|\Rightarrow\left|2\right|=\left|11+2x\right|\)
\(\hept{\begin{cases}11+2x=-2\\11+2x=2\end{cases}\Rightarrow}\hept{\begin{cases}2x=13\\2x=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{13}{2}\\x=\frac{9}{2}\end{cases}}\)
d) \(\left(x-5\right)^4=\left(x-5\right)^6\Rightarrow\hept{\begin{cases}x-5=0\\x-5=1\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=6\end{cases}}\)
a) x ∈ {-2;-1;;0;1;2;3}
b) x ∈ {10;11;12}
c) x ∈ {0;1;2;3;4;5}
d) x ∈ {-1;0;1;2}