CMR: A=(4+a-3b)(3a-5b-1) chia hết cho 16 với mọi số nguyên a và b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(4+a-3b)^{2020}(3a-5b-1)^{2020}=[(4+a-3b).(3a-5b-1)]^{2020}$
Muốn cm biểu thức này luôn chia hết cho $16$ ta chỉ cần cm $(4+a-3b)(3a-5b-1)\vdots 2$
Thật vậy:
Xét tổng: $4+a-3b+3a-5b-1=3+4a-8b$ lẻ nên $4+a-3b, 3a-5b-1$ khác tính chẵn lẻ
Do đó tồn tại 1 trong 2 số chẵn
$\Rightarrow (4+a-3b)(3a-5b-1)\vdots 2$
Do đó ta có đpcm.
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.