Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Đồ thị hàm số y = f x - 2 m có 5 điểm cực trị khi và chỉ khi
A. m ϵ (4;11)
B. m ϵ [2;11/2]
C. m ϵ (2;11/2)
D. m=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Y C B T ⇔ g x 1 . g x 2 < 0 với x 1 = 1 , x 2 = 2 là điểm cực trị của hàm số g x = f x − 2 m
⇒ f 1 − 2 m . f 2 − 2 m < 0 ⇔ 11 − 2 m 4 − 2 m < 0 ⇔ 2 < m < 11 2
Chọn B.
Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x) với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm trên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Chọn B.
Cách 1: Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x)với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm nên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Đáp án: 3 cực trị
Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi đồ thị hàm số y = f(x) và đường thẳng y = m cắt nhau tại hai điểm phân biệt ⇔ 1 < m < 2 .
Chọn C
Bất phương trình tương đương với:
Ta có vì
Do đó
Vậy (1) có nghiệm trên khoảng
Chọn đáp án D.
Chọn đáp án C.