Cho ba số phức a,b,c phân biệt, khác 0 và thỏa mãn a = b = c . Biết một nghiệm của phương trình a z 2 + bz + c = 0 có môđun bằng 1. Mệnh đề nào sau đây là đúng?
A. b 2 = 4ac
B. b 2 = ac
C. b 2 = 2ac
D. b 2 = 3ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Giả sử z1; z2 là nghiệm của phương trình đã cho với |z| = 1.
Theo định lý Viet ta có .Suy ra
Bởi vì , suy ra
a) Gọi \(z_1,z_2\) là các nghiệm của phương trình với \(\left|z_1\right|=1\). Từ \(z_2=\frac{c}{a}.\frac{1}{z_1}\) kéo theo \(\left|z_2\right|=\left|\frac{c}{a}\right|.\frac{1}{\left|z_1\right|}=1\)
vì \(z_1+z_2=-\frac{b}{a},\left|a\right|=\left|b\right|\), ta có \(\left|z_1+z_2\right|^2=1\)
Hệ thức tương đương với
\(\left(z_1+z_2\right)\left(\overline{z_1}+\overline{z_2}\right)=1\) tức là \(\left(z_1+z_2\right)\left(\frac{1}{z_1}+\frac{1}{z_2}\right)=1\)
\(\left(z_1+z_2\right)^2=z_1z_2\)
hay \(\left(-\frac{b}{a}\right)^2=\frac{c}{a}\Rightarrow b^2=ac\)
b) Theo câu a) \(b^2=ac,c^2=ab\). Nhân các hệ thức được \(b^2c^2=a^2bc\Rightarrow a^2=bc\)
Do đó \(a^2+b^2+c^2=ab+bc+ca\)
Hệ tương đương với :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tức là
\(\left(a-b\right)^2+\left(b-c\right)^2+2\left(a-b\right)\left(b-c\right)+\left(c-a\right)^2=2\left(a-b\right)\left(b-c\right)\)
Kéo theo
\(\left(a-c\right)^2=\left(a-b\right)\left(b-c\right)\)
Lấy giá trị tuyệt đối, được \(\beta^2=\gamma\alpha\)
Ở đây \(\alpha=\left|b-c\right|,\beta=\left|c-a\right|,\gamma=\left|a-b\right|\)
Tương tự được :
\(\alpha^2=\beta\gamma,\gamma^2=\alpha\beta,\)
Cộng các hệ thức, được :
\(\alpha^2+\beta^2+\gamma^2=\alpha\beta+\beta\gamma+\gamma\alpha\)
Tức là (\(\left(\alpha-\beta\right)^2+\left(\beta-\gamma\right)^2+\left(\gamma-\beta\right)^2=0\)
Do đó : \(\beta=\alpha=\gamma\)
Giả sử z 1 ; z 2 là các nghiệm của phương trình a z 2 + bz + c = 0 với z 1 = 1
Theo định lí Viet ta có:
z 1 z 2 = c a ⇔ z 2 = c a 1 z 1 ⇒ z 2 = c a . 1 z 1 = 1
Bởi vì
z 1 + z 2 = - b a a = b ⇒ z 1 + z 2 2 = 1
Suy ra
z 1 + z 2 z 1 + z 2 1 ⇔ z 1 + z 2 1 z 1 + 1 z 2 = 1 ⇔ z 1 + z 2 2 = z 1 z 2 ⇔ b 2 = a c
Đáp án B