Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = mx + 2 m + 1 x − m nghịch biến trên khoảng 0 ; + ∞ .
A. m ∈ ℝ \ − 1
B. m ∈ − ∞ ; 0 \ − 1
C. m ∈ 0 ; + ∞
D. m ∈ ℝ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp giải:
Dựa vào điều kiện để hàm số b1 trên b1 đồng biến hoặc nghịch biến trên khoảng
Lời giải: Ta có
Yêu cầu bài toán
Chọn A
Phương pháp:
Tính y'.
Điều kiện để hàm số đã cho nghịch biến trên - ∞ ; 1 là
Cách giải:
Tập xác định
Ta có
Để hàm số nghịch biến trên khoảng - ∞ ; 1
Đáp án A.
Tập xác định: D = ℝ \ − m . Ta có y ' = m 2 − 4 x + m 2 .
Để hàm số nghịch biến trên khoảng − ∞ ; 1 thì ta phải có
m 2 − 4 < 0 1 ≤ − m ⇔ − 2 < m < 2 m ≤ − 1 ⇔ − 2 < m ≤ − 1
Lưu ý: Với cách cho đáp án như trong câu hỏi này, ta có làm như sau:
- Thử với m = − 2 . Khi đó y = − 2 x + 4 x − 2 = − 2 x − 2 x − 2 = − 2 . Suy ra với m = − 2 thì hàm số không nghịch biến trên − ∞ ; 1 . Từ đó loại được đáp án B và C.
- Thử với m = − 1 . Khi đó y = − x + 4 x − 1 . Ta có y ' = − 3 x − 1 2 < 0 ∀ x ≠ 1 .
Suy ra hàm số nghịch biến trên các khoảng − ∞ ; 1 và 1 ; + ∞ . Vậy A là đáp án đúng.