K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Chọn A

Đặt  ta có: 

Ta có 

Do m ∈ Z nên ta xét hai trường hợp sau

+TH1:  thì hàm số đồng biến trên [-1;1].

Xét 

+TH2:  thì hàm số nghịch biến trên [-1;1]

Xét  

Vậy 

Vậy tập S có 4 phần tử.

Nên chọn A.

Nhận xét của Admin tổ 4:

Cách khác liên quan đến bản chất Max, Min của hàm số:

Để giá trị lớn nhất của hàm số y =  sin   x   +   m 3   -   2 sin   x   thuộc đoạn [-2;2]

21 tháng 3 2019

Đáp án B

Ta có  y ' = 4 sin 2 x   cos   x sin   x - ( 2 m 2 - 5 m + 2 ) cos   x = cos   x [ ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ]

Xét trên ( 0 ; π 2 )  ta thấy cos   x > 0 , để hàm số đồng biến trên khoảng này thì  ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ≥ 0  với  ∀ x ∈ ( 0 ; π 2 )  hay ( 2 m 2 - 5 m + 3 ) ≤ 0 ⇒ 1 ≤ m ≤ 3 2  do m nguyên nên tồn tại duy nhất m=1

 

17 tháng 6 2018

16 tháng 11 2019

22 tháng 5 2019

1 tháng 10 2018

Chọn C

19 tháng 6 2021

Sao lại bằng -3 được ạ? 

14 tháng 12 2017

 

 

 

 

29 tháng 8 2019

22 tháng 3 2017

Chọn D

Xét hàm số y =  x 2 - m x + 2 m x - 2  trên [-1;1] có: 

Bảng biến thiên

Trường hợp 1.  Khi đó

Trường hợp 2. 

Khả năng 1. 

Khi đó 

Khả năng 2  Khi đó 

 Trường hợp này vô nghiệm.

Khả năng 3.  Khi đó  Vô nghiệm.

Vậy có hai giá trị thỏa mãn là  Do đó tổng tất cả các phần tử của S là -1.

28 tháng 1 2018