Cho M = 1√1 + 1/√2 + 1/√3 +....+ 1/√100. Hãy so sánh M với 10??
Các bạn cho mình biết cách giải luôn nhé! Chân thành cám ơn ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\)
\(\Rightarrow A
A < 1
xin lỗi mình không biết cách viết phân số!!!!
nha!!!!
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101
=(2^101 -1)/2^100 - 100/2^101
=> A = (2^101 -1)/2^99 - 100/2^100
Bạn ơi khó hiểu quá bạn giải chi tiết hơn giúp mình nhé mình sẽ k cho bạn 2 cái nhé
vì 1/9 > 1/40 ; 1/29 > 1/40 ; 1/31 > 1/40; 1/39 > 1/40
nên 1/9 + 1/ 29 + 1/31 + 1/39 > 1/40 + 1/40 + 1/40 + 1/40 mà 1/40 + 1/40 + 1/40 + 1/40 = 1/10
=) M > 1/10
M > 1/20 + 1/30 + 1/40 + 1/40
M> 2/15 > 2/20 = 1/10
=> M > 1/10
có [x-y]2=1
suy ra [x-y]mũ 2= 1 mũ 2
suy ra x-1=1
x=1+1
x=2