Cho hàm số bậc ba f(x) = x 3 + b x 2 + c x + d . Biết đồ thị của hàm số y = f'(x) như hình vẽ. Giá trị của c b là
A. - 1 3
B. 3 4
C. 1 3
D. - 3 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bảng biến thiên như hình vẽ sau:
Giá trị nhỏ nhất của hàm số là f( b) nhưng giá trị lớn nhất có thể là f (a) hoặc f( e) Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d) nên f(a) - f( d)) = f( b) - f( c)< 0
Suy ra : f( a) < f( d) < f( e)
Vậy m a x [ a ; e ] f ( x ) = f ( e ) ; m i n [ a ; e ] f ( x ) = f ( b )
Chọn C.
Ta có
Quan sát đồ thị có
Đặt phương trình trở thành:
Khi đó
Phương trình này có 3 nghiệm phân biệt
Tổng các phần tử củaS bằng
Chọn đáp án C.
Chọn D
Tập xác định D = ℝ
Đạo hàm cấp 1
Dựa vào đồ thị của hàm số y = f'(x) ta có bảng thiên của hàm số f(x)
Ta có
Dựa vào bảng biến thiên ta có