Gọi A, a lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y = x 3 - 3 x + m trên đoạn [0;2]. Gọi S là tập các giá trị thực của tham số m để Aa = 12. Tổng các phần tử của S bằng
A. 0
B. 2
C. -2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Xét hàm số y= x4- 4x3+ 4x2+ a trên đoạn [ 0; 2].
Ta có đạo hàm y’ = 4x3-12x2+ 8x, y ' = 0
Khi đó; y( 0) = y( 2) = a; y( 1) = a+ 1
+ Nếu a≥ 0 thì M= a+ 1,m = a.
Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3 thỏa mãn
+ Nếu a≤ - 1 thì M = a = - a , m = a + 1 = - a - 1 .
Để M≤ 2m thì a≤ -2, suy ra a a ∈ - 2 ; - 3
Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.
Chọn B.
Đáp án D
Xét hàm số .
;
Bảng biến thiên
Do nên suy ra .
Suy ra .
Nếu thì ,
.
Nếu thì ,
.
Do đó hoặc , do a nguyên và thuộc đoạn nên .
Chọn B
Xét g(x) = x 4 - 4 x 3 + 4 x 2 + a với x ∈ [0;2]
Bảng biến thiên g(x)
Trường hợp 1: a ≥ 0. Khi đó M = a + 1; m = a
Ta có M ≤ 2m Với
Trường hợp 2: Khi đó M = -a; m = -(a+1)
Trường hợp 3: -1 < a < 0. Với
Vậy có 5 giá trị a cần tìm.
Đáp án D
Ta có liên tục trên đoạn .
Ta có
.
.
Vậy m=2 và M = 11, do đó .
Chọn B
Hàm số xác định và liên tục trên đoạn [1;4]. Đặt y = f(x)
Ta có:
Có
Vậy m + M = 16.
Chọn A
Kiến thức bổ sung: Dạng toán tìm GTLN, GTNN của hàm số y = |u(x)| trên đoạn [a;b]
Gọi M, m lần lượt là GTLN, GTNN của hàm số u(x) trên đoạn [a;b]
Đặt:
Ta có:
Suy ra:
TH1: (loại)
(vì ko thỏa mãn giả thiết Aa = 12)
TH2:
Từ giả thiết: Aa = 12
TH3:
Từ giả thiết: Aa = 12
Kết hợp các trường hợp suy ra: S = {-4;4}
Vậy tổng các phần tử của bằng: (-4) + 4 = 0.