chứng tỏ rằng:
a) 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b) 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận xét: 22+23 + 24 +25 = 60, 60 chia hết cho 5
Khi đó, A= (22+23 + 24 +25) + (26 + 27 + 28 + 29) +.....+ (297 +298 +299+2100)
= (22+23 + 24 +25) + 24 (22+23 + 24 +25)+.......+ 296 (22+23 + 24 +25)
= 1+24 + ....+296. (22+23 + 24 +25) chia hết cho 60 ; 60 chia hết cho 5
=> A chia hết cho 5
Vậy A chia hết cho 5
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
5+5^2 +5^3 +5^4...+5^99+5^100
= ( 5+5^2)+(5^3+5^4)+....+(5^99+5^100)
= 5(1+5)+5^3(1+5)+....+5^99(1+5)
= 5.6+5^3.6+....+5^99.6
= (5+5^3+....+5^99).6
Vì (5+5^3+....+5^99).6 chia hết cho 6 nên 5+5^2 +5^3 +5^4...+5^99+5^100 chia hết cho 6.
a = 2 + 22 +23+........................+ 2100 chia hết cho 62
a = [ 2 + 22 +23+.24+25 ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ]
a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ]
a= 62 . [ 210 + 215 + 220 +......................+ 2100 ]
Mà 62 chia hết cho 62 => 62 . [ 210 + 215 + 220 +......................+ 2100 ] hay a chia hết cho 62
a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)
= 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)
= 62+2^5.62+....+2^95.62
= 62.(1+2^5+....+2^95) chia hết cho 62
=> ĐPCM
k mk nha
Bài 1:
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2
=101^2-(1+2+3+...+99+100)
=101^2-100*101/2=5151
\(A=2+2^2+2^3+2^4+2^5+...+2^{100}\)
\(A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(A=62+...+2^{95}.62\)
\(A=62\left(1+...+9^{95}\right)\)chia hét 62
\(\Rightarrow dpcm\)
\(A=2+2^2+.........+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+.........+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(2+2^2+2^3+2^4\right)+.....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=2.62+.......+2^{96}.62\)
\(\Leftrightarrow62\left(2+......+2^{96}\right)⋮62\left(đpcm\right)\)
a)
S = 4 + 42 + 43 + ... + 499 + 4100
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 499 + 4100 )
S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)
S = 4.5 + 43.5 + .. + 499.5
S = ( 4 + 43 + .. +499).5 => S \(⋮\)5
b) S = 2 + 22 + 23 + ... + 22009 + 22010
=> S \(⋮\)2
S = = 2 + 22 + 23 + ... + 22009 + 22010
S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )
S = 2.3 + 23.3 +... +22009.3
S = ( 2 + ... +22009 ) x 3
=> s\(⋮\) 3
=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6