K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

Chọn D

Xét hàm số f(x) = x 4 - 4 x 3 + 4 x 2 + a  trên đoạn [0;2], ta có:

trên đoạn

Vì 

nên trên đoạn [0;2] giá trị lớn nhất và giá trị nhỏ nhất của hàm số  lần lượt là a+1, a

Suy ra  nếu  nếu 

 

Khi đó 

nên chọn 

Khi đó  nên chọn 

Vậy có 4 giá trị a thỏa yêu cầu

NV
4 tháng 4 2021

\(g\left(x\right)=x^4-4x^3+4x^2+a\)

\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)

TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)

TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)

11 tháng 12 2017

Đáp án D

Xét hàm số .

;

Bảng biến thiên

Do nên suy ra .

Suy ra .

Nếu thì ,

.

Nếu thì ,

.

Do đó hoặc , do a nguyên và thuộc đoạn nên .

21 tháng 2 2019

Chọn B

Xét g(x) =  x 4 - 4 x 3 + 4 x 2 + a  với x  ∈ [0;2]

Bảng biến thiên g(x)

Trường hợp 1: a  ≥ 0.  Khi đó M = a + 1; m = a

Ta có 2m  Với 

Trường hợp 2:  Khi đó M = -a; m = -(a+1)

Trường hợp 3: -1 < a < 0. Với 

Vậy có 5 giá trị a cần tìm.

28 tháng 7 2017

Chọn D

Ta có  3x.f(x) -  x 2 f ' ( x )   =   2 f 2 ( x )  

Thay x = 1 vào ta được  vì f(1) =  1 3 nên suy ra C = 2

Nên  Ta có: 

Khi đó, f(x) đồng biến trên [1;2]

Suy ra 

Suy ra 

18 tháng 3 2018

6 tháng 4 2017

24 tháng 6 2019

7 tháng 4 2018

12 tháng 4 2017

Đáp án D

Phương pháp:

Dựa vào đồ thị hàm số ta xác định được điểm cao nhất và điểm thấp nhất của đồ thị trên đoạn [-1;3]

Tung độ điểm cao nhất là giá trị lớn nhất của hàm số, tung độ điểm thấp nhất là giá trị nhỏ nhất của hàm số trên đoạn [-1;3].

Từ đó ta tìm được: M;m => M-m

Cách giải:

Từ đồ thị hàm số ta thấy trên đoạn [-1;3] thì điểm cao nhất của đồ thị là điểm A(3;3) và  điểm thấp nhất của đồ thị là B(2;-2) nên GTLN của hàm số là M=3 và GTNN của hàm số là m = -2 

Từ đó M - m = 3 - (-2) = 5