K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

22 tháng 7 2017

Chọn A

Gọi số tự nhiên có bốn chữ số thỏa mãn yêu cầu bài toán là 

Số phần tử của không gian mẫu là 

Gọi biến cố A ‘‘Số được chọn lớn hơn số 6700’’.

Ta các TH sau:

TH1:  có 1 cách chọn.

có 3 cách chọn.

+ Các chữ số c,d được chọn từ 8 chữ số còn lại có sắp thứ tự và số cách chọn là  A 8 2

Số cách để chọn ở trường hợp 1 là: 3. A 8 2

TH2 : có 3 cách chọn. Khi đó: b,c,d có A 9 3  cách chọn.

Số cách để chọn ở trường hợp 1 là: 3. A 9 3

Như vậy, ta được n(A) = 3. A 8 2  + 3. A 9 3 = 1680

Suy ra 

17 tháng 5 2019

Chọn đáp án B.

16 tháng 5 2017
16 tháng 3 2017


21 tháng 5 2018

Chọn A

+) Không gian mẫu  Ω  = “Chọn ngẫu nhiên một số trong các số tự nhiên có 3 chữ số”.=> | Ω | = 9. 10 2

+) Biến cố A = “Số tự nhiên được chọn chia hết cho 9 và các chữ số đôi một khác nhau”.

Ta tìm số các số tự nhiên gồm 3 chữ số khác nhau và chia hết cho 9 (tổng các chữ số là một số chia hết cho 9). 

Bộ ba số (a;b;c) với a,b,c ∈ [0;9](a,b,c đôi một khác nhau ) và a + b + c = 9m, m ∈ ℕ *   được liệt kê dưới đây:

Vậy có tất cả 10.3! + 4.2.2! = 76 =>  | Ω A | = 76

Xác suất cần tính bằng 

6 tháng 9 2019

NV
25 tháng 12 2022

Không gian mẫu: \(A_7^3-A_6^2=180\) số

Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn

- 3 chữ số đều lẻ: \(A_3^3=3\) số

- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách

+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số

+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số

\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số

Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)

31 tháng 1 2017

Chọn C

Ta có 

Gọi số tự nhiên cần tìm có bốn chữ số là  a b c d ¯

Vì  a b c d ¯  chia hết cho 11 nên (a + c) - (b + d)  ⋮ 11

=> (a + c) - (b + d) = 0 hoặc (a + c) - (b + d) = 11 hoặc (a + c) - (b + d) = -11 do 

Theo đề bài ta cũng có a + b + c + d chia hết cho 11

Mà 

hoặc 

Vì  nên  (a + c) - (b + d) và a + b + c + d cùng tính chẵn, lẻ 

(do các trường hợp còn lại không thỏa mãn) => (a,c) và (b,d) là một trong các cặp số: 

- Chọn 2 cặp trong số 4 cặp trên ta có C 4 2  cách.

- Ứng với mỗi cách trên có 4 cách chọn a; 1 cách chọn c; 2 cách chọn b; 1 cách chọn  d.

Vậy xác suất cần tìm là