K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

Đáp án C.

Đặt  t = sin 2 x t ∈ 0 ; 1   , PT trở thành

2 t + 3 1 − t = 4.3 t ⇔ 2 3 t + 3 1 − 2 t − 4 = 0  (1)

Xét hàm số f t = 2 3 t + 3 1 − 2 t − 4  trên 0 ; 1 .

Đạo hàm f ' t = 2 3 t . ln 2 3 − 2.3 1 − 2 t . ln 3 < 0, ∀ t ∈ 0 ; 1 . Suy ra hàm số f t  nghịch biến trên 0 ; 1 . Như vậy phương trình f t = 0  có không quá một nghiệm trên [ 0 ; 1 ] .

Nhận thấy f 0 = 2 3 0 + 3 1 − 2.0 − 4 = 0  nên phương trình (1) có duy nhất một nghiệm t = 0 ∈ 0 ; 1 . Suy ra sin x = 0 ⇔ x = k π , k ∈ ℤ  .

Cho   x ∈ − 2017 ; 2017 → − 2017 ≤ k π ≤ 2017 → − 642,03... ≤ k ≤ 642,03. Do   k ∈ ℤ nên k ∈ − 642 ; − 641 ; − 640 ; ... ; 640 ; 641 ; 642 . Vậy có tất cả   642 − − 642 + 1 = 1285 giá trị k nguyên thỏa mãn.

Vậy phương trình đã cho có 1285 nghiệm trên − 2017 ; 2017 .

NM
7 tháng 8 2021

ta có \(\hept{\begin{cases}\sqrt{2}\left(sinx+cosx\right)=2sin\left(x+\frac{\pi}{4}\right)\\sinx.cosx=\frac{1}{2}sin2x=-\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)=-\frac{1-2sin^2\left(x+\frac{\pi}{3}\right)}{2}\end{cases}}\)

Vậy phương trình \(\Leftrightarrow2sin\left(x+\frac{\pi}{4}\right)+\frac{1-2sin^2\left(x+\frac{\pi}{4}\right)}{2}=1\)

Đặt \(sin\left(x+\frac{\pi}{4}\right)=a\Rightarrow PT\Leftrightarrow2a+\frac{1-2a^2}{2}=1\Leftrightarrow\orbr{\begin{cases}a=1+\frac{1}{\sqrt{2}}\\a=1-\frac{1}{\sqrt{2}}\end{cases}}\)

vì sin <1 nên \(sin\left(x+\frac{\pi}{4}\right)=1-\frac{1}{\sqrt{2}}\)có 4 nghiệm trên \(\left(0,2\pi\right)\)

NV
7 tháng 11 2021

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

19 tháng 8 2017

19 tháng 11 2018

Chọn C

Ta có: nên (1) và (2) có nghiệm.

Cách 1:

Xét: nên (3) vô nghiệm.

Cách 2:

Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:

(vô lý) nên (3) vô nghiệm.

Cách 3:

Vì 

nên (3) vô nghiệm.

13 tháng 3 2019

23 tháng 9 2019

Đáp án D

8 tháng 2 2017

19 tháng 3 2017

Đáp án đúng : A

NV
22 tháng 12 2020

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)