Cho hàm số f(x)= x ( x - 1 ) ( x - 2 ) . . . ( x - 2019 ) . Giá trị của f'(0) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau
Nhận thấy
Để tìm ta so sánh f(-1) và f(2)
Theo giả thiết,
Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0
Chọn B
Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:
Từ bảng biến thiên ta có
Mặt khác
Suy ra
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
+ \(M=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)
+ \(\frac{1}{2^2}>0,\frac{1}{3^2}>0,...,\frac{1}{2019^2}>0\)
\(\Rightarrow M>0\) (1)
+ \(M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2018\cdot2019}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow M< 1-\frac{1}{2019}< 1\) (2)
+ Từ (1) và (2) => 0 < M < 1
=> M không là số tự nhiên