Có bao nhiêu số có 3 chữ số đôi một khác nhau có thể lập được từ các chữ số 0, 2 ,4, 6, 8?
A. 48
B. 60
C. 10
D. 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
a. Số số lập được: \(5.5=25\) số
b. \(5.5.4=100\) số
c. Gọi số đó là abcd
TH1: d=0 \(\Rightarrow abc\) có \(A_5^3=60\) cách
TH2: \(d\ne0\Rightarrow d\) có 2 cách, abc có \(4.4.3=48\)
Tổng cộng: \(60+2.48=156\) số
d. Gọi số đó là abcde
e có 3 cách chọn
abcd có \(4.4.3.2=96\) cách
Tổng cộng: \(3.96=288\) số
Câu 5: Từ các số 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau?
A. 108
B. 90
C. 120
D. 60
Câu 5: Từ các số 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau?
A. 108
B. 90
C. 120
D. 60
Chọn đáp án A.
Xếp một hàng thành 6 ô đánh số từ 1 đến 6 như hình bên: 123456.
Số các chữ số gồm 6 chữ số khác nhau được lập từ 6 chữ số đã cho là 5.5! = 600 số.
Ta tìm số các chữ số mà hai chữ số 0 và 5 đứng cạnh nhau:
· Chữ số 0 và 5 cạnh nhau tại ô số 1 và 2 có 1.4! = 24 số.
· Chữ số 0 và 5 đứng cạnh nhau tại các ô (2;3), (3;4), (4;5), (5;6) có 4.2!.4! = 192 số.
Vậy có tất cả 24 + 192 = 216 số mà chữ số 0 và 5 đứng cạnh nhau.
Do đó, số các số thỏa mãn yêu cầu bài toán là 600 – 216 = 384 số.
Đáp án A
Xếp một hàng thành 6 ô đánh số từ 1 đển 6 như hình bên:
Số các chữ số gồm 6 chữ số khác nhau được lập từ 6 chữ số đã cho là 5.5! = 600 số.
Ta tìm số các số mà hai chữ số 0 và 5 đứng cạnh nhau:
• Chữ số 0 và 5 cạnh nhau tại ô số 1 và 2 có 1.4! = 24 số.
• Chữ số 0 và 5 đứng cạnh nhau tại các ô (2;3), (3;4), (4;5), (5;6) có 4.2!.4! = 192 số.
Vậy có tất cả 24 + 192 = 216 số mà chữ số 0 và 5 đứng cạnh nhau.
Do đó, số các số thỏa mãn yêu cầu bài toán là 600 – 216 = 384 số.
Số bất kì: \(6!-5!\) số
Xếp 0 và 5 cạnh nhau: 2 cách
Hoán vị bộ 05 với 4 chữ số còn lại: \(5!\) cách
Hoán vị bộ 05 với 4 chữ số còn lại sao cho 0 đứng đầu: \(4!\) cách
\(\Rightarrow2.5!-4!\) cách xếp sao cho 0 và 5 cạnh nhau
\(\Rightarrow6!-5!-\left(2.5!-4!\right)\) cách xếp thỏa mãn