K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

12 tháng 12 2018

a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k  nên 7k là hợp số ( không thỏa mãn).

Với k = 1 thì  7k = 7 là số nguyên tố.

Vậy k = 1.

b, k chia cho 5 có thể dư 0,1,2,3,4.

Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).

Với k chia cho 5 dư 2 thì k+85 và k+8 > 5 nên k+8 là hợp số ( loại).

Với k chia cho 5 dư 3 thì k+125 và k+12 > 5 nên k+12 là hợp số ( loại).

Với k chia cho 5 dư 4 thì k+65 và k+6 > 5 nên k+6 là hợp số ( loại).

Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )

Với k = 5. Thử thấy 5,11,13,17,19  đều là số nguyên tố.

Vậy k = 5.

29 tháng 6 2015

a) Vì k là số tự nhiên nên :

- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.

- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.

- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.

                Vậy k = 1 thỏa mãn đề bài.

29 tháng 6 2015

a) Điều kiện: k>0

  Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.

  7k có các ước:  1,k và 7 (vẫn còn nếu k là hợp số)

 Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài

b) Từ đề trên thì chắc chắn a không là số chẵn.

 Nếu k có dạng 3q thì:

           + k+6 chia hết cho 3 (loại)

   Nếu k có dạng 3q+1 thì 

          + k+14 = 3q + 15 chia hết cho 3 (loại)

 Nếu k có dạng 3q+2 (>5)thì:

   + Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)

   + Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)

Như vậy thì một trong các số trên đề sẽ là hợp số

  Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1

 => k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)

6 tháng 2 2018

giờ làm được chưa

1 tháng 12 2015

Vì  là số nguyên tố nên nên 

Nếu k=2=> k+2=4 là hợp số 

Nếu k=3 => k+2=5; k+4=7 đều là hợp số

Vậy k=3

 

1 tháng 12 2015

a﴿ Điều kiện: k>0

Số nguyên tố là số có hai ước tự nhiên 1 và chính nó. Mà 11 là số nguyên tố

11k có các ước: 1,k và 11 ﴾vẫn còn nếu k là hợp số﴿

Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài 

b) ﴿ Vì k là số tự nhiên nên :

 Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.

 Nếu k = 1 thì 7 . k = 7, là số nguyên tố.

 Nếu k ≥ 2 thì 7 . k ∈ B﴾7﴿, không phải số nguyên tố.

Vậy k = 1 thỏa mãn đề bài

câu c tương tự câu b

29 tháng 11 2015

a) nếu k=1

=>11.1=11 là số nguyên tố 

nếu k=2,3,4,...... thì p.11 sẽ có nhiều hơn hai ước =>là hớp ố =>loại 

vậy k=1

b)

k=2=>k+6=2+6=8 là hợp số =>loại

k=3=>k+6=3+6=9 là hợp số => loại

k=5=>k+6=11 ;k+8=13;k+12=17kk+14=19 là số nguyên tố => chọn

nếu k>5

=>k có dạng 5p+1;5p+2;5p+3;5p+4

nếu k=5p+1

=>k+14=5p+1+14=5p+15=5(p+3) chia hết cho 5 => loại 

nếu k=5p+2

=>5p+8=5p+2+8=5p+10=5(p+2) chia hết cho 5 =>loại

nếu k=5p+3

=>k+2=5p+5 chia hết cho 5 => loại

nếu k=5p+4

=>k+6=5p+10 =5(p+2) chia hết cho 5 =>loại 

vậy p=5

28 tháng 11 2015

 k=1

 k=5

 k=3

15 tháng 10 2016

Ta có 7 và 11 là số nguyên tố.

=> k = 1

Nếu \(k>1\) thì 7k chia hết cho 7; 7k chia hết cho k. 

<=> 11k chia hết cho 11 và 11k chia hết cho k

Vậy k = 1

25 tháng 11 2017

Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu k > 1 thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1