Tìm A biết : \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta đặt A=10+15+...+300
Số số hạng của A là:(300-10):5+1=59(số)
Tổng của A là:(10+300).59:2=9145
=>9145+x=6750
=>x=6750-9145
=>x=-2395
b)\(\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}-\frac{1}{x+1}=\frac{59}{77}\)
<=>\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}-\frac{1}{x+1}=\frac{59}{77}\)
<=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}-\frac{1}{x+1}=\frac{59}{77}\)
<=>\(1-\frac{1}{7}-\frac{1}{x+1}=\frac{59}{77}\)
<=>\(\frac{6}{7}-\frac{1}{x+1}=\frac{56}{77}\)
<=>\(\frac{1}{x+1}=\frac{6}{7}-\frac{56}{77}=\frac{66}{77}-\frac{56}{77}\)
<=>\(\frac{1}{x+1}=\frac{10}{77}\)
<=>10(x+1)=77
<=>10x+10=77
<=>10x=67
<=>x=6,7
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)\)
\(A=1-\frac{1}{9}=\frac{8}{9}\)
A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=1\(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
=1-\(\frac{1}{9}=\frac{8}{9}\)
Vậy A=\(\frac{8}{9}\)
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\frac{9}{10}=0\)
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(\Leftrightarrow A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(\Leftrightarrow A=\frac{9}{10}-\frac{9}{10}\)
\(\Leftrightarrow A=0\)
a) 1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/10.9 - 1/9.8 - 1/8.7 - 1/7.6 - 1/6.5 - 1/5.4 - 1/4.3 - 1/3.2 - 1/2.1
= 1/10 - 1
= 0,1 - 1
= -0,9
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)
=> \(A=\frac{9}{10}\)
b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)
=> \(A=1+\frac{7}{n-5}\)
Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)
=> n=(-2; 4, 6, 8)
\(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{47}{42}\)
\(x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)=\frac{47}{42}\)
\(x+A=\frac{47}{42}\)
ta thấy :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=\frac{1}{1}-\frac{1}{6}\)
\(A=\frac{5}{6}\)
vậy \(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{47}{42}\)
hay \(x+\frac{5}{6}=\frac{47}{42}\)
\(x=\frac{47}{42}-\frac{5}{6}\)
\(x=\frac{2}{7}\)
\(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{47}{42}\)
\(x=\frac{47}{42}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\)
\(x=\frac{47}{42}-\frac{5}{6}\)
\(x=\frac{2}{7}.\)
\(\Rightarrow A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{7}\)
\(\Rightarrow A=\frac{6}{7}\)
nhớ tick nha!!!!!!!!!!!!!
A = 1/1*2 +1/2*3 +1/3*4 +1/4*5+ 1/5*6 +1/6*7
A = 1/1 - 1/2 +1/2 -1/3 +1/3 -1/4 +1/4 -1/5 +1/5 -1/6 +1/6 -1/7
A = 1 - 1/7
A= 6/7