Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ A B C D , S A = x . Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau góc 60 ° .
A. x = 3 a 2 .
B. x = a 2 .
C. x = a .
D. x = 2 a .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Để cho gọn ta chọn a =1
Chọn hệ trục tọa độ sao cho A = O(0;0;0) và B(1;0;0), D(0;1;0) S(0;0;x) với x = SA >0
Suy ra C(1;1;0)
=> VTPT của mặt phẳng (SCD) là
=> VTPT của mặt phẳng (SBC) là
Từ giả thiết bài toán, ta có
Chọn D.
- Kẻ BH ⊥ SC ⇒ DH ⊥ SC (hai đường cao tương ứng của hai tam giác bằng nhau).
- Có 2 trường hợp xảy ra:
TH1:
- Xét hai tam giác đồng dạng SAC và OHC ta có
TH2:
- Xét hai tam giác đồng dạng SAC và OHC ta có:
Đáp án C
+ Trong S A B dựng A I ⊥ S B ta chứng minh được A I ⊥ S B C 1 .
Trong S A D dựng A J ⊥ S D ta chứng minh được A J ⊥ S C D 2 .
Từ (1) và (2) ⇒ S B C , S C D ^ = A I , A J ^ = I A J ^
+ Ta chứng minh được A I = A J . Do đó, nếu góc I A J ^ = 60 ° thì Δ A I J đều ⇒ A I = A J = I J .
Δ S A B vuông tại A có AI là đường cao ⇒ A I . S B = S A . A B ⇒ A I = S A . A B S B 3
Và có S A 2 = S I . S B ⇒ S I = S A 2 S B 4
Ta chứng minh được I J // B D ⇒ I J B D = S I S B ⇒ I J = S I . B D S B = 4 S A 2 . B D 2 S B 2 5 .
Thế (3)&(5) vào A I = I J ⇒ A B = S A . B D S B ⇔ A B . S B = S A . B D .
⇔ a . x 2 + a 2 = x . a 2 ⇔ x 2 + a 2 = 2 x 2 ⇔ x = a